RESEARCH PROBLEMS

21. Richard Bellman: Dynamic programming.

Given N coins, k of which are defective, either lighter or heavier than the other $N-k$ coins which are assumed to be of equal weight, and a balance, determine the weighing procedures which minimize the number of weighings required to separate the defective coins from the ordinary coins. Consider the following two cases
a. The k defective coins are all of the same weight, heavier or lighter than the regular coins.
b. The k defective coins are all of different weight.

Also determine the weighing procedures which minimize the expected time required to determine the defectives.

This is a particular case of the general "sorting" problem where an individual element of a set may be characterized by a number of properties and we have a number of testing devices for determining these properties. (Received May 31, 1955.)

22. Richard Bellman: Analysis.

The derivative of the gamma function satisfies the recurrence relation

$$
\Gamma^{\prime}(x+2)=(2 x+1) \Gamma^{\prime}(x+1)+x^{2} \Gamma^{\prime}(x)
$$

for $x>0$. Can one derive from this equation a convergent continued fraction expan sion for $\Gamma^{\prime}(x) / \Gamma^{\prime}(x+1)$, or a related expression, which can be used either
a. To obtain a rapid method for computing $\Gamma^{\prime}(1)$, the negative of Euler's constant, or
b. To obtain some results concerning the arithmetic character of Euler's constant? (Received May 31, 1955.)

23. Richard Bellman: Number theory.

There are a number of numerical techniques available for determining the maximum over the x_{i} of the linear form, $L(x)=\sum_{i=1}^{n} a_{i} x_{i}$, subject to the linear constraints $\sum_{i=1}^{n} b_{i j} x_{j} \leqq c_{i}, i=1,2, \cdots, M$, whenever it exists. Can one obtain a usable algorithm for the cases where we impose additional constraints of the form
a. $x_{i}=0$ or 1 , for $i=1,2, \cdots, N$, or
b. x_{i} is zero or a positive integer? (Received May 31, 1955.)

24. Sherman Stein: Number theory.

Let a be a positive rational fraction with odd denominator and $u_{n}=(2 n+1)$, $n=1,2, \cdots$. Let b_{1} be the smallest of the u_{i} satisfying $a-\left(u_{i}\right)^{-1} \geqq 0$. Having defined $b_{1}, b_{2}, \cdots, b_{n}$, define b_{n+1} as the smallest $u_{i}, u_{i}>b_{n}$, with $a-\left(b_{1}\right)^{-1}-\cdots-\left(b_{n+1}\right)^{-1} \geqq 0$. Is the sequence $b_{1}, \cdots, b_{n}, \cdots$ finite for each a ? (Received May 23, 1955.)

25. Sherman Stein: Geometry.

Let $J \subset R_{2}$ be a rectifiable Jordan curve, with the property that for each rotation R, there is a translation T, depending on R, such that $(T R J) \cap J$ has a nonzero length. Must J contain the arc of a circle? (Received May 23, 1955.)

