
ASYMPTOTIC PHENOMENA IN MATHEMATICAL PHYSICS 

K. O. FRIEDRICHS 

The problems I intend to speak about belong to the somewhat un
defined and disputed region at the border between mathematics and 
physics. The fields of physics from which these problems originate are 
rather classical; the mathematical questions involved are also rather 
classical. That does not mean that these problems belong to the past. 
On the contrary, they are quite alive today and—I am convinced— 
they will remain so for some time. 

The problems concern what may be called asymptotic phenomena. 
Instead of explaining in general terms what I mean by asymptotic 
phenomena, I prefer to single out at first one class of such phenomena: 
discontinuities. A typical discontinuity of the kind I have in mind is 
the boundary of the shadow which appears when a light wave passes 
an object. Now, the propagation of light is governed by a partial 
differential equation which has continuous solutions. How then is it 
possible that a discontinuity arises? Of course, actually there is no 
sharp discontinuity a t the shadow boundary; there is a transition 
from light to dark which takes place across a very narrow strip along 
the shadow boundary. Nevertheless, it is remarkable enough that the 
differential equations of wave motion have solutions which involve 
such quick transitions—in fact, most differential equations of physics 
possess such solutions—and it is an interesting task to study those 
features of these equations which make such quick transitions pos
sible. 

Discontinuities and quick transitions occur in various branches of 
physics. A striking example of a discontinuity is the shock in gas 
motion. Quick transitions occur frequently in situations in which one 
perhaps would not speak of a discontinuity. A case in point is 
Prandtl 's ingenious conception of the boundary layer. This is a narrow 
layer along the surface of a body, traveling in a fluid, across which 
the flow velocity changes quickly. Prandtl 's observation of this quick 
transition was the starting point for his theory of fluid resistance. 
Other cases, closely related to the boundary layer phenomenon, are 
the so-called edge effect in the deformation of elastic plates and shells 
and the skin effect in the flow of electric currents. A number of other 
such effects will be described in the later parts of this lecture. All 
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these effects may be regarded as typical asymptotic phenomena. 
Without attempting to give a precise definition of this term, I shall 

simply call asymptotic all those phenomena which show discon
tinuities, quick transitions, nonuniformities, or other incongruities 
resulting from approximate description. 

In the mathematical treatment of such phenomena, physicists have 
to a certain degree relied on their intuition, and very effectively so; 
but they have also developed or employed systematic mathematical 
procedures. 

In such a systematic approach one may develop an appropriate 
quantity with respect to powers of a parameter, e. This expansion is 
to be set up in such a way that the quantity is continuous for e > 0 but 
discontinuous for e = 0. Naturally, a series expansion with this charac
ter must have peculiar properties. A most remarkable property is 
that in general these series do not converge. 

No doubt, divergent series are very useful; it has even been said 
that they are more useful than convergent ones. However this may be, 
if a divergent series is useful it must be meaningful. 

The use of a series which does not necessarily converge is a typical 
instance of a "formal procedure" and I should perhaps say a word 
about the role of formal procedures in mathematical physics. 

Those who employ mathematics as a tool have rarely been in
hibited by the fear of divergence; they have always been confident 
that , somehow or other, formal procedures are valid. A mathe
matician may be inclined to frown on this attitude as a superstition ; 
but, on second thought he will yield and try to show that formal 
procedures—I mean those used by good physicists—indeed are valid 
if only the meaning of validity is properly interpreted. 

There are numerous instances of justification of formal procedures 
by re-interpretation. I need only refer to the generalizations of the 
notions of function and differential operator, which have been very 
effective, in particular, in recent years. I t would certainly be in
teresting to trace the effect of these generalizations in mathematical 
physics; but I do not intend to do so. 

The present talk will be solely concerned with the formal expan
sions used in the analysis of asymptotic phenomena. The idea of 
giving validity to these formal series is classical: essentially it goes 
back to Poincaré. 

Poincaré advanced this idea in his work on ordinary differential 
equations in 1886. Before that time many formal series solutions of 
such equations had been developed and it was found that they did 
not converge—in general. Poincaré proved that these formal series 
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solutions represent asymptotic expansions of actual solutions. Thus it 
became clear in which way formal series solutions may be regarded 
as "valid." 

Let me explain the meaning of the phrase "formal series solution" 
and its "asymptotic" character in connection with an elementary 
differential equation, namely the differential equation of the second 
order, 

(1) m" + au' + bu = 0. 

Here u is a function of a variable z, which in the present context may 
just as well be taken as real. Furthermore, a and b are analytic func
tions of z and e is a parameter. Note that this parameter occurs in 
such a way that the order of the differential equation is reduced for 
€ = 0 . 

We are interested not in solutions of this differential equation for 
each fixed value of the parameter e, but in the dependence of such 
solutions on this parameter, in particular, in the neighborhood of 
€ = 0 . 

The formal series which we shall consider are not simply power 
series in e; they are rather of the form 

(2) «S(')/i£«"*n(*). 
n 

which will be referred to as the "standard" form. One may try to find 
solutions of the differential equation (1) which admits such a series 
expansion. To this end one tries to determine the functions S and vn 

by inserting this series into the differential equation and setting the 
coefficient of every power of e equal to zero. For the functions S and 
vn one then finds simple differential equations which are easily solved. 
The equation to be satisfied by the function 5, the so-called "charac
teristic equation," is 

(3) (Sy + aS' = 0. 

Here S' is the derivative of S. Inserting the functions 5 and vn thus 
found into the series (2) one obtains a formal series solution of the 
differential equation. In general, though, this series does not con
verge. 

A formal series of the type described is said to represent the 
asymptotic expansion of a function u(z,e) if the remainder of the terms 
up to the iVth order is of the order i V + 1 ; precisely, if 

N 

n=0 
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uniformly in an appropriate ^-interval. 
The problem treated by Poincaré was a little different from the one 

just described since he did not consider expansions with respect to 
powers of e but with respect to powers of z~l. Nevertheless, it was to 
be expected that the analogue of what he proved also holds in the 
case considered here. That is, each formal series of the standard type 
should be the asymptotic expansion of an actual solution. That this 
is so for equations of the second order was proved as early as 1899 
by Horn. The corresponding general theory for equations of the nth 
order, developed in 1908 by Birkhoff, initiated an extensive literature 
in this and related fields. 

These results may be used to answer questions concerning the 
behavior of specific solutions of the differential equation as the param
eter e tends to zero. I should like to discuss one such question, which 
is extremely elementary, but nevertheless leads in a natural way to 
the boundary layer phenomenon. 

Let us prescribe boundary values for the solution of our differential 
equation at two points, JS = 0 and z~Zu and ask how the solution of 
this boundary value problem behaves as e—*0. Note that for e = 0 the 
differential equation reduces to an equation of the first order. One 
may therefore wonder whether the solution of the equation of the 
second order approaches a solution of the equation of the first order. 
Now a solution of the first order equation is already determined by 
one boundary condition ; one cannot expect that both conditions will 
be satisfied in the limit. One boundary condition—at least—will get 
lost. The question is, which one? 

This question and related questions can easily be answered with 
the aid of two solutions possessing a standard expansion. The answer 
is that under appropriate conditions the solution of the boundary 
value indeed does converge to a solution of the first order equation. 
This solution assumes one of the two boundary values but not the 
other one. Which boundary value is lost depends on the sign of a/e. 
Let us assume that the lost boundary value is the one prescribed at 
3 = 0. 

The process of losing a boundary value takes place through non-
uniform convergence. If the parameter e is small, the solution will run 
near the limit solution except in a small segment at the end point 
z = 0 where it changes quickly in order, as it were, to retrieve the 
boundary value about to be lost. 

Thus a "quick transition" is found to occur. It must occur since a 
boundary condition is about to be lost; and this loss in turn is neces
sary since the order of the differential equation is about to drop. To be 
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sure, the reduction of the order of a differential equation combined with 
the loss of a condition such as a boundary condition is the most charac
teristic mathematical feature of asymptotic phenomena. 

The next step in the asymptotic analysis of our problem consists 
in a detailed description of the solution of the boundary value problem 
within the transition layer. To this end we introduce a new inde
pendent variable by stretching the original variable in an appropriate 
manner. Specifically, we introduce the ratio 

f = */€ 

as a new variable. We then consider the quantity u as a function of 
f, in addition to e, and ask whether or not this new function ap
proaches a limit as e—*0. This is indeed the case. The limit process is 
now uniform even near 2 = 0. Therefore the new limit function may 
serve as an approximate description of the quick change of u in the 
transition layer. 

The new limit function is defined for all f à 0 ; in fact it approaches 
a definite value as f—><*>. Remarkably enough, this value of u at 
f = oo is exactly equal to the value which the limit function in the 
first "direct" process assumes at z — 0. 

This peculiar phenomenon may at first sight appear a little para
doxical, but actually, it is quite natural. Evidently, any fixed s-neigh-
borhood of the point z = 0 corresponds to an arbitrarily large part of 
the f-axis if only e is made sufficiently small. It is therefore clear that 
a connection of the two limit functions must involve the behavior 
of the direct limit function at 2 = 0 and the behavior of the second 
limit function at infinity. The phenomenon just described will be 
referred to as "identification phenomenon." 

The results discussed in connection with the simple equation of 
the second order are rather typical and they may frequently serve 
as a guide in understanding other asymptotic phenomena. 

As an example, let us consider Prandtl 's boundary layer theory. 
This theory was developed in order to solve the problem of fluid 
resistance, which had caused great difficulties since the time of 
d'Alembert. I t was known that the resistance is due to the viscosity 
of the fluid; for, it was known that nonviscous fluids do not exert a 
force on bodies through it. Still, for fluids with low viscosity the 
assumption of absence of viscosity led to a very satisfactory descrip
tion of the flow around the body, although it did not yield a re
sistance. 

Prandtl in 1904 resolved this dilemma by advancing the hypothesis 
that the effect of viscosity is concentrated in a narrow layer near the 
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surface of the body. On the basis of this hypothesis he was able to give 
a detailed description of the flow in it. With unfailing intuition he 
appraised the order of magnitude of the various terms of the govern
ing differential equation and rejected those that he judged to be in
significant. The simplified equations thus obtained could then be 
solved. 

There was never any doubt that the boundary layer theory gave a 
proper account of physical reality, but its mathematical aspects re
mained a puzzle for some time. Only when this theory is fitted into 
the framework of asymptotic analysis, does its mathematical struc
ture become transparent. 

Viscous fluid flow—in two dimensions, for simplicity—is governed 
by a partial differential equation of the fourth order. If the viscosity 
vanishes, the equation reduces to one of the third order. The expan
sion of viscous fluid flow in the neighborhood of inviscid fluid flow 
thus appears as an asymptotic expansion, the viscosity being the 
parameter. A viscous fluid sticks to the wall; hence two boundary 
conditions are imposed on the viscous fluid flow: namely the condi
tions that the tangential and normal velocity components vanish. 
An inviscid fluid is permitted to slide; hence only one condition is 
imposed on it. Thus one boundary condition gets lost when the 
viscosity becomes zero. 

I t is now clear that, before the boundary condition is lost, a quick 
change must take place across a thin layer near the boundary. This 
layer, of course, is Prandtl 's boundary layer. 

Prandtl 's detailed description of the flow in the boundary layer 
can be re-derived by a stretching procedure similar to the one de
scribed above. The new stretched variable must be so chosen that 
with respect to it the boundary layer does not shrink to zero as the 
viscosity tends to zero. 

The approach to the boundary layer theory outlined leads to a 
definite clarification of the issue but it does not yield a rigorous 
justification of this theory. The main reason for this difficulty is the 
nonlinearity of the problem. 

The situation is similar in many other nonlinear asymptotic prob
lems. Methods for approximate solutions of such problems are fre
quently suggested by the facts discussed in connection with the 
simple ordinary differential equation of the second order. 

The boundary layer effect discussed is not the only form of break
down of uniform convergence. Such a breakdown may also happen in 
the interior of the domain. A most remarkable such occurrence, in 
its mathematical aspects even more striking than the boundary layer 
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phenomenon, is the phenomenon discovered by Stokes in 1857. 
This phenomenon may be explained in connection with the simple 

differential equation of the second order (1) discussed before. In doing 
this it is preferable to assume that the coefficients and the solution 
are analytic functions of the complex variable z. 

It was mentioned above that every formal series solution of the 
standard type is the asymptotic expansion of an actual solution of 
equation (1), but it was not stated where this asymptotic expansion 
is valid. In fact, it may happen that this expansion is valid in only 
a part of the domain in which the function u(z, e) is defined. That is, 
it may happen that the function u admits the standard asymptotic 
expansion in only a part of the 2-plane. In other parts it then will 
possess a completely different asymptotic expansion. The lines which 
separate subregions of different expansions are called "Stokes lines." 
The change of the asymptotic expansion on crossing these lines is the 
"Stokes phenomenon." 

In short one may say: the Stokes phenomenon obtains at a line if the 
asymptotic expansion of the analytic continuation of u across this line 
is not given by the analytic continuation of the terms of the asymptotic 
expansion. 

If a Stokes phenomenon is present, the leading term of the asymp
totic expansion of the solution u changes its character on crossing the 
Stokes line; one may therefore say that this term is discontinuous 
across the Stokes line. Suppose the function u stands for a physical 
quantity and suppose this quantity is approximately described by 
the leading term of the expansion. If this term is discontinuous, the 
physical quantity is approximately described as being discontinuous, 
although actually it is continuous. Thus we have encountered the 
possibility of describing continuous quantities as discontinuous ones 
by describing them asymptotically. This possibility is of great sig
nificance. To be sure, a large class of discontinuity phenomena in 
mathematical physics may be interpreted as Stokes or boundary layer 
phenomena. 

For an ordinary linear differential equation it is easy to locate lines 
at which a Stokes phenomenon occurs. One can always find such 
lines near a "turning point." A turning point or transition point is a 
point z at which two roots Sf{z) of the characteristic equation (3) 
coalesce: S[{z) ^S^z). Stokes phenomena then may occur at certain 
rays through the turning point. For equations of the type here con
sidered, these rays are curves on which the real parts of S{ (z) and 
$(a) agree: Re S[(z) = Re S&z). 

For the differential equation (1), in particular, there are four such 
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rays issuing from a turning point. At which ones of these rays the 
Stokes phenomenon occurs depends on the solution considered. 

Specifically, one can find a solution which possesses a standard 
asymptotic expansion in the open region R generated by three of the 
four sectors that are formed by the four rays. It possesses an asymp
totic expansion also in the fourth sector, at the two rays bounding the 
fourth sector, and at the turning point; but all three expansions differ 
from each other and from the standard expansion in the region R. 
Clearly, a Stokes phenomenon is present; the two rays bounding the 
fourth sector are Stokes lines. 

Of course, one wants to know how to find these different expan
sions. 

Before indicating how one may attack this "continuation" problem 
1 should mention that such a turning point problem was first treated 
by Jeffreys in 1923 in connection with a somewhat different differ
ential equation. 

One possible approach to a solution of the continuation problem 
consists in reducing it to the problem of finding the asymptotic ex-
oansion at the turning point. This problem will be referred to as the 
"connection problem." 

I shall briefly indicate a formal procedure by which this connection 
problem may be attacked. 

In this approach one again employs the "method of stretching." 
For equation (1), in particular, one introduces 

f = sA1'2. 

instead of z, as new independent variable, assuming the turning point 
to be at z = 0. I t would not be difficult to motivate the choice of e1/2 as 
stretching factor instead of e. Again, any fixed neighborhood of the 
turning point will eventually cover the whole f-plane. The quantity 
u, when considered as a function of f, now possesses an expansion 
with respect to powers of e1/2. The terms of this expansion, defined 
in the whole f-plane, can be determined by identifying their behavior 
a t f = oo with the behavior of the terms of the direct expansion at 
2 = 0. In other words, one may employ an identification procedure 
similar to the one discussed in connection with the boundary value 
problem. The expansion of the solution u at the turning point can 
then be found. 

As mentioned before, this approach is only a formal procedure; 
naturally, one will ask: does it yield correct results? For differential 
equation (1), in particular, it is not too difficult to prove that this is 
so. Such a proof is not so easy, however, in more complicated cases; 
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for example if an additional singularity is present, or if the equation 
is of higher order. 

The first decisive step in developing a rigorous turning point theory 
was taken by Langer in 1934. Langer, in fact, treated at first a prob
lem which is not as simple as the one discussed here. Subsequently, a 
considerable amount of work on the turning point problem has been 
done, and is being done today. 

There are many interesting problems of mathematical physics in 
which a turning point analysis plays a role. 

Wentzel, Brillouin, and Kramers in 1926 used asymptotic approxi
mations and turning point considerations in solving eigenvalue prob
lems in quantum theory. 

A very remarkable problem which requires a turning point analysis 
is the problem of the stability of viscous fluid and the onset of turbu
lence. Quite a number of aerodynamicists and mathematicians have 
worked on this somewhat controversial question. Early theoretical 
investigations led to the prediction that such an instability should 
occur under peculiar circumstances. This prediction should perhaps 
have been believed by aerodynamicists, but it was not generally 
accepted at first. Eventually, the prediction was confirmed by ex
periment with surprising accuracy. 

The pertinent mathematical situation was definitely clarified only 
in recent years by Wasow through a rigorous turning point analysis. 

The asymptotic phenomena of ordinary differential equations 
which I have described up to now involve linear equations ; of course 
such phenomena have also been studied in connection with nonlinear 
equations. An interesting problem concerns periodic solutions of a 
differential equation of the form 

en" = f(u', u). 

The question is what happens with these periodic solutions as €—K), 
in particular if the limit equation 

ƒ(«', « 0 = 0 

has no periodic solution. Of course there could be no boundary layer 
effect in the strict sense since there is no boundary. What happens is 
that the limit function—if it exists—satisfies the equation f(u', u)=0 
except at certain points where the derivative u' has a jump discon
tinuity. 

A problem of this type was first treated by van der Pol, 1927, who 
in this way explained the occurrence of certain jerky oscillations in 
electric networks, which he called "relaxation oscillations." Subse-
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quently much work was done on electrical and mechanical oscillations 
of this kind, as well as on the purely mathematical aspects of the 
problem. Strong results on asymptotic periodic solutions have been 
obtained by Levinson since 1942. 

Another, rather spectacular, case of a discontinuity which may 
take place in the interior of the domain and not at a boundary is 
the gas dynamical shock. The shock may also be interpreted as the 
limit of a quick transition and be treated by an asymptotic analysis 
which involves the drop of the order of a differential equation. The 
same may be said about the closely related phenomena of explosion 
or detonation. 

Let me turn to partial differential equations and first consider the 
hyperbolic equation 

(4) utt — Au = 0, 

called the "wave equation." Here u is a function of t, x, y, z and À 
is the Laplacian. 

The propagation of electromagnetic and acoustic waves is governed 
by this equation; but these processes are frequently treated in a 
different manner, in the manner of geometrical optics. One is led to 
this second treatment in a natural way by asking for formal solutions 
of the "standard" form 

(5) u = es^J^€nvn. 
n 

Here S and vn are functions of /, x, yy z. 
For these functions simple equations are found and readily solved. 

These equations are of the first order; the drop in order, so typical 
for asymptotic problems, is thus apparent. The equation for 5, the 
characteristic equation 

(6) s) = (vsy, 
is nonlinear. 

The formal series (5) is similar to that used for ordinary differ
ential equations. There is a slight difference, however, since the 
parameter e entering it does not occur in the differential equation. If 
a concrete problem is to be solved by using this formal solution, the 
parameter will have to be identified with one of the data of the prob
lem, such as a wave length or a pulse width. 

In accordance with the principle of Poincaré, one expects that there 
exist actual solutions having these formal solutions as asymptotic 
expansions. That this is so has apparently not yet been proved. One 
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should think, however, that the available methods of proving the ex
istence of solutions of hyperbolic equations would be strong enough 
for this purpose. But, the primary interest of the asymptotic theory 
of the wave equation seems to lie in the asymptotic expansion of the 
solutions of specific problems. 

In many cases one can describe a wave process with the aid of the 
leading term of the above expansion (5). This description now leads 
to geometrical optics. The function S is the eiconal, and the equation 
5 = const, describes the motion of a wave front. It has been known 
for a long time that the transition of wave optics to geometrical 
optics involves asymptotic expansion; but little attention was paid 
to the fact that this expansion enables one also to determine the 
propagation of the amplitude. A systematic exploitation of this pos
sibility was started only about ten years ago by Luneburg. 

The most interesting asymptotic phenomenon of wave motion oc
curs when the eiconal S develops singularities on certain surfaces, 
called caustics. Such a singularity may occur since the differential 
equation satisfied by S is nonlinear. 

Suppose now the wave function u possesses a standard asymptotic 
expansion on one side of the caustic, then its expansion on the other 
side will be a different one. In other words, a Stokes phenomenon ap
pears at the caustic. 

The situation is similar at a shadow boundary. The transition from 
light to shadow is also a Stokes phenomenon. For, a shadow boundary 
is just a line across which the asymptotic expansion changes, in other 
words, a Stokes line. To determine the asymptotic expansion in the 
shadow region is an interesting problem which has not yet been solved 
completely. 

In connection with the interpretation of the shadow as a Stokes 
phenomenon I may perhaps make a general remark about the role of 
discontinuities in the description of nature. On the one hand, discon
tinuities appear to play a secondary role, namely when they are con
sidered as approximate descriptions of continuous phenomena in
volving quick transitions. On the other hand, discontinuities play a 
primary role. For, the experimental description of nature and the 
theoretical description based on it involves objects with more or less 
sharp outlines. Therefore, nature could not be described in this way 
if natural objects did not possess sharp outlines, i.e. discontinuities. 
In other words, the quantities employed to describe nature could not 
even be defined if discontinuities did not occur. In this sense, discon
tinuities appear to play a primary role. 

I t may be debated whether or not this situation involves a vicious 
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or a nonvicious circle. In any case, one may say that asymptotic 
description is not just a matter of imperfection, but is an essential 
element in the mathematical description of nature. 

The next subject for discussion naturally would be elliptic partial 
differential equations. Various important mathematical results have 
been obtained in this field. I need only refer to the classical asymp
totic theory of eigenvalues developed by Weyl, Courant, and Carle-
man. 

Instead of discussing these results I prefer to discuss a few problems 
from mechanics which involve elliptic equations. 

Let us first turn to problems of elasticity. One such problem arises 
when a thin circular disk is subjected to lateral pressure applied 
along the edge. The disk will deflect if this pressure is large enough. 
This problem was investigated by Stoker and myself in 1940. The 
main question was what happens if the lateral pressure is increased 
indefinitely or—what is equivalent—if one lets the thickness of the 
plate shrink to zero. The answer was quite unexpected to us. 

The deflection w and the stress function $, considered as functions 
of x and y, satisfy a pair of differential equations 

h2A2w = ƒ, A2tf> = g 

in which A2 is the biharmonic operator, and ƒ and g are quadratic 
functions in the second derivatives of w and <j>\ furthermore, h is the 
thickness of the plate. 

The equations which result when one sets h = 0 imply a constant 
distribution of the pressure in the plate. The question then arose, 
what is the value of this pressure? Is it the value prescribed at the 
edge? 

One really had no right to expect this, since the order of the system 
of equations drops if one sets h = 0, and one must face the possibility 
that at least one boundary condition gets lost. This might be the 
boundary condition concerning the pressure. If so, there should be a 
thin boundary layer across which internal and external pressure are 
connected. 

The answer to this question could be derived from a boundary 
layer analysis of the type described before with the aid of the method 
of stretching. The answer was that the interior limit pressure indeed 
is not equal to the external pressure ; but in addition it was found that 
this pressure is negative, that is represents tension. Thus tension 
should prevail over most of the plate in spite of the fact that a com
pression is applied at its edge. 

This result was very surprising and we wondered whether we were 
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not misled by having employed a boundary layer analysis heuris-
tically. However, the validity of this procedure was proved rigorously 
in this case; in fact, the present case is one of the few involving non
linear equations in which this was possible. 

Quick transitions of stresses and strains at the boundary of a de
formed elastic body have been observed in many cases. Instead of a 
boundary layer phenomenon one then speaks of an "edge effect." A 
number of edge effects closely related to the one discussed have been 
treated in the last ten years. The first detailed mathematical analysis 
of an edge effect was given by H. Reissner in 1912 in his theory of 
shells. 

A rather famous edge effect was observed much earlier. This is the 
effect in the bending of thin plates with free edges. The differential 
equation for the deflection w of such a plate is the biharmonic equa
tion A2w = 0. Two boundary conditions should be imposed on w on 
mathematical grounds, but three conditions were strongly favored on 
physical grounds. A pair of two very peculiar boundary conditions 
were proposed by Kirchhoff in 1850 and later on justified by Kelvin 
and Tait by qualitative arguments which essentially involved a 
boundary layer. But only recently was this problem treated by a 
consistent asymptotic analysis. 

In such an analysis, all significant quantities must first be de
veloped with respect to the thickness of the plate. A stretching tech
nique of the type discussed earlier leads to a description of the stresses 
in the boundary layer. In this way one finds that Kirchhoffs condi
tions indeed are correct, but, in addition, one can clearly understand 
in detail how the third boundary condition gets lost. 

Asymptotic approximation of quantities defined in thin layers may 
lead to strange phenomena. I should like to mention one such phe
nomenon in connection with a problem in fluid dynamics; namely the 
problem of determining the flow of a layer of fluid over a bottom 
surface under the influence of gravity. This flow is described by a 
potential function. 

There exists a very effective approximate treatment of such flow 
based on the assumption that the layer of fluid is very thin. This is the 
so-called "shallow water theory." 

A peculiar feature of this approximation is that in it the motion is 
governed by a hyperbolic differential equation, while originally it is 
described by a potential function, the solution of an elliptic equation. 
Small disturbances, which in the original description would affect 
the whole flow instantaneously would be propagated with a finite 
speed according to the shallow water theory. How is this possible? 
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This discrepancy is a typical symptom of asymptotic approxima
tion. The shallow water theory results from the leading term of an 
expansion with respect to the average thickness of the layer. In 
deriving this expansion one must stretch the vertical variable y and 
keep the horizontal variable x. The potential equation then goes over 
into the equation 

h2<t>xx + <j>nn = 0 

where rj=y/h. Clearly, for h — Q the elliptic character of the differ
ential equation is lost. One may perhaps hesitate to destroy the 
potential equation and to spoil the advantage of working with po
tential functions. Still, it is appropriate to do so. It has been sug
gested to call this procedure the "method of spoiling." 

Incidentally, it was recently shown by Hyers and myself that a 
similar method of spoiling is the clue to a rigorous treatment of the 
"solitary wave," i.e. a steady shallow water wave with a single hump. 

One more problem from fluid dynamics should be discussed, 
Prandtl 's theory of the airfoil of finite span. If a thin wing of finite 
span travels through the air, a vortex sheet will develop at the trailing 
edge. A precise treatment of the resulting airflow offers insurmount
able difficulties, but Prandtl gave an approximate treatment derived 
from rather intuitive arguments. He replaced the wing by a line, 
called "lifting" line at which the flow is assumed to have an ap
propriate singularity and made other simplifications. This procedure 
was strikingly effective in the case of normal flight, i.e. flight in the 
direction perpendicular to the wing, but the method breaks down 
when applied to a wing in yaw or a swept back wing. 

This difficulty was quite recently overcome by a systematic asymp
totic treatment of the problem. The wing was imbedded in a set of 
wings with the same span and similar cross-section profiles. When the 
chord e of the profile approaches zero, the wing shrinks to a line, the 
"lifting line." The potential function describing the airflow past the 
wing is now developed with respect to e about e = 0. The leading term 
in this expansion describes exactly Prandtl 's approximate flow; it can 
easily be given explicitly as soon as the circulation around the lifting 
line is known. 

In two dimensional airfoil theory the circulation can be deduced 
from the shape of the profile by Kutta and Joukowski's theory. In the 
present treatment the shape of the airfoil has disappeared in the 
limit. To find the missing circulation this shape must be recovered. 
That can be done by the method of stretching. The new, stretched 
variables may be so chosen that the profile remains fixed; but then 
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the length of the span tends to infinity as €—>0. With respect to the 
new variables the flow approaches a new limit. The new limit flow is 
essentially a two dimensional flow around an airfoil with infinite span. 
Such flow is well determined if its behavior at infinity is known. Now, 
infinity in the new variables corresponds to the neighborhood of the 
lifting line in the original variables. By identifying the behavior of the 
terms in the direct expansion at the lifting line with the behavior at 
infinity of the terms of the expansion after stretching one is able to 
find the missing circulation. 

In this way, one can retrieve Prandtl 's results for a wing flying in 
the head-on direction, and, in addition, one can treat wings in yaw, 
and swept back wings, which up to now appeared not to be amenable 
to an approach employing a lifting line. 

In most problems discussed so far quite similar methods of asymp
totic analysis were employed. These methods led to success in a num
ber of cases, but still their scope is limited. That applies, in particular, 
to the simple method of stretching which played such a prominent 
part in our discussion. 

Although the scope of the method of stretching is rather limited, 
the general idea of employing appropriate transformations of the in
dependent variable, depending on the parameter, seems to be very 
fruitful. The importance of this idea, which occurs already in Poin-
caré's work, was strongly emphasized by Lighthill and various spe
cifically adapted transformations were employed by him and others 
with remarkable success. One of the goals which may be attained in 
this way is uniformity. That is, one desires an approximation which 
is uniformly valid on the boundary and off the boundary in a problem 
of the boundary layer type, or on the Stokes line and off the Stokes 
line when a Stokes phenomenon is involved. 

There are innumerable other asymptotic problems in mathematical 
physics more or less related to those discussed. An important field of 
such questions is concerned with physical processes which do or do 
not approach a steady limit as time goes on indefinitely. In fact, the 
occurrence of stability and instability may be regarded as an asymp
totic phenomenon ; and the decision between stability and instability 
therefore requires an asymptotic analysis. 

It should not be forgotten that the foundations of statistical 
mechanics originated by Boltzmann and Gibbs abound with asymp
totic problems of great significance and great difficulty. 

It is not my intention to speak about these various fields. There is 
only one field of physics in which asymptotic problems occur to 
which I should like to refer: quantum theory. 
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It would have been tempting to speak about the quantum theory of 
fields. Here physicists have developed formal series expansions with 
great ingenuity. These series, to say the least, do not converge, and 
yet, to an amazing degree, they make sense physically. To be sure, 
to justify these formal procedures is a challenge to the mathematician. 

However, I want to confine myself to discussing one or two prob
lems in quantum theory which are well understood mathematically. 

The first of these problems concerns the differential equation 

d 
ei — \p = H(z)\f/ 

dz 

in which yp is an element of a Hubert space which depends on the 
variable z and H is a self-adjoint operator, which is also assumed to 
depend on z. One is interested in the asymptotic behavior of a solu
tion for small values of e. 

The equation is essentially of the same type as the ordinary differ
ential equation considered before, the only difference being that the 
function ^ is an element of a Hubert space. For this reason, a few 
technical difficulties must be overcome; but the idea of asymptotic 
analysis is exactly the same as for ordinary differential equations. 

The interest in this problem arises in connection with the "adia-
batic theorem" in quantum theory. The differential equation is the 
Schrödinger equation for the state ^ of the system if z/e is regarded as 
the time. The operator H(z) is then a Hamiltonian which varies 
"slowly" if € is small. The adiabatic theorem now states: if the state 
\p was an eigenstate of H originally, 2 = 0 say, it will remain ap
proximately an eigenstate if t increases provided e is small enough. 

This theorem now results from the leading term of the asymptotic 
expansion of the solution \p. In addition, however, the asymptotic 
analysis enables one to determine terms of higher order in the ex
pansion and thus to estimate the "probability of nonadiabatic transi
tion." 

This is of particular interest in the case in which two eigenvalues 
of the operator H coalesce a t some time during the process and the 
question has been asked what happens in such a case. Now, if one 
looks at the problem as an asymptotic problem, one need only realize 
that coalescence of eigenvalues corresponds to a turning point. A 
turning point analysis then gives a simple answer. 

I should like to summarize some of the ideas presented. I have tried 
to show that a great number of asymptotic problems in mathematical 
physics have important features in common: in particular the drop 
of the order of the differential equation and the loss of a continuity or 
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boundary condition. I have tried to show that many of these prob
lems can be attacked by similar methods. These methods involve 
asymptotic expansion, and the analysis of the regions of nonuni-
formity by stretching or adjustment of the independent variables 
combined with an appropriate identification procedure. 

Furthermore, as I had mentioned in connection with the problem 
of the shadow, asymptotic description is not only a convenient tool 
in the mathematical analysis of nature, it has a more fundamental 
significance. 

This fact is also apparent in the relationship between classical and 
quantum mechanics; a few words may be said about this relationship. 

When wave mechanics was discovered it was immediately recog
nized that the relationship between wave mechanics and classical 
mechanics is essentially the same as that between wave optics and 
geometrical optics. That is to say, classical mechanics results from 
the leading term in the asymptotic expansion of quantum mechanics 
and in this sense classical mechanics plays a secondary role. On the 
other hand, as has been stated frequently in discussions of the 
foundations of quantum-theory, it is impossible to define and ex
plain the basic notions of quantum mechanics without reference to 
classical mechanics. In this sense then, classical mechanics plays a 
primary role. 

Thus we meet again the same circular situation which we had dis
cussed in connection with the problem of the shadow. Indeed, the 
relationship between classical and quantum mechanics affords a striking 
illustration of the fundamental role which asymptotic description plays 
in the mathematical description of nature. 
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