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One of the most important of the many achievements of Willard 
Gibbs was the derivation of a single equation of universal validity, 
by which the properties of a macroscopic system in equilibrium could 
be expressed in terms of the submicroscopic mechanical properties of 
the molecules composing it. I wish to discuss the present status of the 
methods of numerical evaluation of one problem using this equation. 

It is known experimentally, with a simple extrapolation from ther­
modynamic theory, that any system composed of real molecules a t 
any finite nonzero temperature, T, and at infinite dilution, for which 
the number density, p~N/V, of molecules approaches zero, exists 
as a perfect gas. For the perfect gas the pressure, P , is given by the 
equation, P=pkT, with k equal to Boltzmann's constant, fe = 1.38 
X10~~16 ergs/deg °K. The energy of the perfect gas depends only on 
Ty and not on the density, p. At sufficiently high temperature, and 
what is high or low depends on the type of molecule, the material 
remains gaseous even if the pressure is increased to any experi­
mentally attainable value. The perfect gas equation is no longer 
obeyed exactly a t high densities, but P remains a smooth, and pre­
sumably analytic, monotonie function of p. At low temperatures, be­
low the critical temperature, condensation occurs as the density is 
increased. If only one species of molecule is present the condensation 
is abrupt on the pressure plot, that is the density increases discon-
tinuously from that of the gas to that of the condensed phase. Below 
the triple point temperature the condensed phase is crystalline. (The 
one exception is helium for which the triple point does not exist above 
zero.) Above the triple point the condensed phase is a liquid. 

The thermodynamic properties of a system are completely deter­
mined if one knows the equation for the energy, E0, as a function of T 
in the perfect gas state, EQ{T), and the equation of state, that is the 
equation for the pressure as a function of density and temperature, 
P=P(p, T). The energy, E0(T), of the perfect gas, can be readily 
expressed from the Gibbs formulation as SNkT/2 plus a sum over 
the internal quantum states of the molecules, and even for relatively 
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complicated molecules the equations can be evaluated numerically, 
often even with greater precision than calorimetric measurements 
achieve. For the gas, the pressure, at a given temperature, may be 
expressed as a power series in the density, p. The temperature de­
pendent coefficient of p", known as the p'th virial coefficient, can be 
expressed as an integral of a function of their mutual potential over 
the relative position coordinates of v molecules. Although numerical 
evaluation for coefficients higher than the second is relatively diffi­
cult, no fundamental problem seems to be involved. 

For the condensed phase the situation is less satisfactory. At low 
temperatures, for which the material condenses to a crystal, one pro­
ceeds by making use of this empirically known fact, and the known 
crystal structure. The integrand, which occurs in the Gibbs formula­
tion, is then assumed to have a (computable) maximum when the 
atoms are all situated on the lattice sites of the known experimental 
lattice. The energy is then assumed to be quadratic in the small dis­
placements from these equilibrium positions, and by the method of 
normal coordinates reasonably satisfactory computations are pos­
sible. 

For the intermediate temperature range between the triple point 
and the critical point, and for which the condensed phase is a liquid, 
the situation is in still poorer shape. In the liquid (as also in the very 
high density gas), each molecule is simultaneously in interaction with 
a large number of neighbors. The development of the virial expansion, 
in which one considers first pair interactions, then triples, etc., no 
longer converges. On the other hand there is no single, regular, peri­
odic configuration of dominant probability, which can be used as a 
starting point of a development for small displacements, as in the 
crystal. One is forced to a general consideration of the fundamental 
equations. 

The computation of the thermodynamic properties does not answer 
all possible questions about a liquid. Among others one would cer­
tainly wish to know what may be vaguely called its structure. For 
some time even a precise question had not been formulated, the 
answer to which would describe the structure of a liquid unambigu­
ously. At the present time, possibly unwisely, one assumes the de­
scription to be answered best in terms of the probability densities, 
pn , for n = l, 2, 3, • • • molecules. The function, pi(r), is defined con­
ceptually by the statement that pi(r)dr is the probability that a 
molecule will be found at the position r in the volume element dr. For 
a fluid pi(r) is a trivial constant equal to the average number density 
p. The quantity pz(ru t<i)dt\dti is defined as the probability of finding 
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simultaneously a molecule at t\ in dt\ and one at r2 in dr2. This pair 
density, p2, is a function only of the distance, r\% = 11\ — r2 j , in a fluid, 
and can be found experimentally as the Fourier transform of the 
X-ray scattering intensity. The higher probability densities, such 
as p*(ri, r2, r3), proportional to the probability of simultaneously 
finding molecules at ri, r2, and r3, are experimentally unobservable, 
at least at present, but are essential concepts in almost any at tempt 
to treat the transport properties of fluids such as viscosity or con­
ductivity. These probability densities for the equilibrium system 
are also formally derivable from the general Gibbs equation. 

The discussion of the status of the at tempt to obtain a general 
treatment by which the formal Gibbs equations can be evaluated 
numerically is my subject. Any such general treatment would apply 
equally to crystal, or to dilute gases, although in these cases more 
special methods lead to simpler solutions. 

The mathematical problem may be stated to be the evaluation for 
small values of n, n = 0, 1, 2, etc., of a set of functions, Gn{n}, given 
by the equation, 

(1) G - M - E - ^ - f f ••• fcSU{{n} + [N}}d{N}, 

where the symbol {n} is used for the 3n cartesian coordinates of n 
molecules in 3-dimensional space, 

(2) ri, ra, • • • , rn, 

and d{n} for the 3w-dimensional volume element, 

(3) d{n} = dri • • • drn. 

The parameter z is real positive, and we are interested in values up 
to those for which zV may be very large, zV=10n. The functions, 
G$\ are real positive symmetric functions of the coordinates of N 
molecules, such that the function G$+M approaches in value the 
product of functions GfflGffl when the coordinates, {N}, of N of the 
molecules are all very far distant from all the coordinates, {M}, of 
M of them, 

if r - -> • , l^nûN, N+l^mSN + M. 

The function Gf(rî) is unity, so that, 

i-N 

(5) G^ ) { iV}-* I lGr ) ( f < ) = l I >>,-> « ° , i \ r £ i > . / £ l . 
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Furthermore the functions Gffi approach zero in value if any of the 
distances, r»y, approach zero, 

(6) G™{N}->0, anyr< , -»0 . 

The volume, V, over which the integration is to be extended, is to 
be taken as very large compared to r% if r0 is the significant distance 
compared to which the relations (4), (5), and (6) become valid. 

The physical interpretation of the problem is that of the computa­
tion of the equation of state, with the Grand Canonical Partition 
Function of Gibbs, after summation over the internal molecular 
quantum states, and integration over the momenta. A macroscopic 
system of one kind of molecule, in equilibrium, has its thermo­
dynamic state specified by three variables, one of which must deter­
mine the over-all size of the system, and may be chosen as the vol­
ume, V. The other two may be chosen as intensive variables, one of 
which determines the concentration of energy in the system, and the 
other the concentration of molecules. Of these, the first is usually 
chosen as the absolute temperature, T. The other, that which deter­
mines the concentration of molecules or density, we choose as the 
activity, z. This is related to the chemical potential, JU, of Gibbs, by 
the equation, 

(7) z = exp [(M - no)/iT]9 

where JJ,Q is so chosen that z becomes equal to the number density, 

(8) P = N/V, 

at the limit that both become zero, 

(9) lim — = 1, (determines juo), 
*-*o L p J 

for which density the system always approaches a perfect gas in 
properties. 

If G$ is defined to be 

(10) Ĝ 0> = e r p ( - t M # } / * r ) , 
with UN{N} the mutual potential energy of the molecules, 

(11) UN{N}->0 a l l r o - x » , N ^ i > j ^ l , 

(12) UN{N} -» 00 anyr t f -*0 , 

then the function Go has the physical significance that 

(13) Go == epvl»T. 
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with P the pressure of the system. One might point out here that 
PV/kT is of the order of the number, 27, of molecules in the volume, 
Vf and we wish to choose V large enough that this is something like 
1023. 

Since P is expressed by the equation (1) for n = 0 as a function of 
z and r , the thermodynamic relations, 

(14) z[d{P/kT)/dz]r~p, 

(15) [d(P/kT)/dT], = H - üo, 

with H the Enthalpie and Ho the Enthalpie of the perfect gas state, 
serve to give the difference of all thermodynamic properties of the 
system from those of the perfect gas. 

The computation of the thermodynamic properties of the perfect 
gas is not only formally given by the equations of Gibbs, but is 
numerically evaluated with high precision for many even relatively 
complicated molecules, using spectroscopic data. Given UN, which is 
an appropriately averaged mutual potential over the internal molecu­
lar states, the evaluation of equation (1) for n = 0 would complete the 
computation of all of the thermodynamic properties a t all tempera­
tures and densities. Even for systems which are essentially quantum 
mechanical a modification of the meaning of G§\ leads to the correct 
equations. We might also mention that the extension to systems com­
posed of several kinds of molecules does not introduce essentially new 
complications. 

The functions Gn of Equation (1) for w = l, 2, etc., go beyond the 
thermodynamic specification of the system. In general the physical 
meaning is that 

(16) Gn{n) = e p W O n { w } , 

where pn {n} is the probability density that molecules will be found 
simultaneously at all of the positions {n}. Since for a fluid pi(r t) is a 
constant, 

(17) Pi(r) = p, 

the equation for n = l gives no essentially new information, but 
P2(ri, r2) for a fluid, which is a function of the distance, 

(18) f i 2 = | rx — r 2 | , 

(19) p2(ri, r2) = p2(ri2), (fluid) 

is the Fourier transform of the X-ray scattering intensity, and hence 
is known experimentally, (Fig. 1). 
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For a fluid n(r\y r2) =* P2(|n — r2|) 
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FIG. 1 

The theoretical physicist has one great advantage over the pure 
mathematician as recompense for the difficulty of the problems which 
he is forced to undertake: he usually knows the correct answers to 
his problems, answers supplied by the experimentalists. The solutions 
of Equation (1) for w = 0 lead to curves of P versus z that look 
qualitatively like those of Fig. 2. Starting a t the origin, P increases 
linearly with z with a slope kT. The curves then tend to bend up­
wards at all low temperatures, and a t sufficiently low T values there 
is a singularity followed by an enormous increase in slope correspond­
ing to the discontinuous density increase at the activity of con­
densation. For increasing T values the singularity moves toward 

! 
p 

0 

(8P/8z)T = />k T /z 

Tl T/ A 
• 1 / / 1/ VVT, 
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/ / \ K "^critical 
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increasing z-values, becomes less marked, and finally seems to dis­
appear at the critical temperature, Tc. Above Tc the curves look 
smooth. Translated to plots of P versus p""1 these are the familiar P 
versus V plots of Fig. 3 with the shaded two-phase region for all 
temperatures below Tc, for which both gas and the condensed phase 
of liquid or crystal are coexistent. 

Finally to make the characteristics of the functions G$ more 
explicit we may mention that for simple spherical, or nearly spheri­
cal, chemically saturated molecules, one generally assumes UN to be 
a sum of mutual pair potentials, 

(20) UN - E E u(ra) 

with the potential of a single pair given by the Lennard-Jones 6-12 
potential, 

(21) u(r) = w0[(roA)12 - 2(r0/r)6], 

with a minimum value, u = — u0, at r =r0, (Fig. 4). For such molecules 
the pressure will be a universal function of kT/u0 and zrl, a statement 
equivalent to the "Law of Corresponding States." 

Returning now to the mathematical problem of evaluation of 
equation (1), we see that the assumption of a zero potential, 
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FIG. 4 

(22) tf* = 0, OW = 1, 

leads to the trivially simple result, 

(23) 

(24) 

Go = e W = £ VN « 
iVêO iV! 

p/&r = « 

which, with equation (14) gives z = p , or the perfect gas equation, 
p = N/V, tha t 

(25) PV/NkT - 1. 

This is the starting point for the solution at low values of z. We 
write G$ as unity, the value which it has when all molecules are far 
apart, plus correction terms which are nonzero only when there are 
clusters of molecules close together. There will be N(N—l)/2 terms 
which are nonzero when single pairs are close together. The correction 
terms for two pairs are the products of the terms for the two single 
pairs. Those for n2 pairs, n% triples, • • • , nv p-fold clusters, are the 
product of functions of n2 pair corrections, n% triple corrections, • • • , 
nv p-fold corrections all of which are nonzero only when all the mole­
cules of the cluster are close to each other. That is, one expresses 
Gf as 
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GiNr = l + X 2 3 - - ' Z ) I I (P a i r corrections) 

X I I (triple corrections) • • • H (*>-fold corrections). 
$==1 c „ = l 

I t is not difficult to express the p-fold cluster correction quite 
generally in terms of G£0) for fi^v. If an integral, 

(26) b, = (l/v\V) f f • f M o l d corrections) d{y}f 

is defined, one sees that a t the limit V—»°° , &„ is independent of V. The 
combinatorial problem of the number of ways one can make nv clus­
ters of v each is easily solved, and the simple result, 

(27) P/kT = z + £ bvz\ 

is found. The coefficient, &2, for instance, is 

(28) b2 = — ATIT2 | | e x p u(r) 1 - l l rfr. 

Equation (27) gives a useful expression for P for low z-values, and 
is valid up to the first singularity, 2 = z0, on the positive real axis of 2, 
which singularity is at the activity, z0, of condensation. For the con­
densed state we are forced to use more erudite methods. 

Before discussing the integral equation approach, one should at 
least mention the cell or free volume method, which does lead, with­
out too great computational difficulties, to expressions for P that are 
reasonably good in the condensed phase range. The method may be 
justified in various ways. That which I prefer is as follows. One may 
readily prove that any thermodynamic potential is always an ex-
tremum for the equilibrium distribution of molecules. One may then 
assume a distribution, namely the functions G$ of equation (1), in 
sc^re analytical form such that the integrations over the coordinates 
can actually be carried out, and some thermodynamic potential, say 
the Helmholtz Free Energy, actually computed for this nonequilib-
rium assumed distribution. If there are any adjustable parameters of 
the distribution they should be so determined as to give a minimum 
Free Energy for fixed V, T, and N. 

The simplest integrable distribution is that of placing the N mole­
cules in a close-packed lattice of iNf-cells, with one molecule per cell 
constrained to a probability distribution within the cell, say a simple 
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Gaussian around the center, independently of the positions of the 
others. The single adjustable parameter is then that determining the 
Gaussian width. The model may be improved by adjusting the 
lattice parameter, permitting more cells than molecules, with some 
cells empty, or further by permitting a correlation which changes the 
probability of finding a cell empty depending on the number of neigh­
boring empty cells. 

Different variations of this method have led to reasonably re­
spectable equations for the pressure in the condensation range. How­
ever it is fair to say that none of these various approaches has grown 
to the stature of distinguishing two condensed phases, crystalline 
and liquid in different temperature-density ranges. Essentially the 
method always assumes a long range crystalline order. 

The most ambitious method of solution of the problem is that 
which leads to a system of integral equations. 

Consider any linear operator, O, which operates on Gffl to give, 

OGÏÏ - G$\ S Ar<) + Z E ^ V «) 

+ 2 X) Z) $* \ti, rh rk) + • • • h 

and on Gn to give a similar sum, 

*=1 J 

Operate on both sides of equation (1) with O. On the right, under 
the integral, consider a single term of the sum of equation (29), say 
the term r/££M with {v\ consisting of some of the molecules of n, and 
{/x} a subset of the molecules of N. Sum over all values of iV^ju, 
which will contain such a term, and integrate over the coordinates 
d{ N—JU} . One obtains just Gn+tiïf+p t o be integrated over d{fi}.One 
has, then, on the left the functions on the right hand side of equa­
tion (30), and on the left a sum of integrals of fGn+^fl^d {/x}. With a 
little algebraic manipulation this can be brought into the form of a 
generalized vector-matrix equation, 

(31) W = LW«>\ 

i.e. 

(31') *n = E Lntm^\ 
m 
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in which ^ is a vector whose components, ^„, are themselves functional 
vectors in the continuous 3^-dimensional coordinate space of n mole­
cules, and L is a matrix, whose elements, Lntmf are themselves rectang­
ular continuous matrices of Zn- and 3m-dimensional coordinates, that 
is, Ln^m means matrix multiplication, 

(32) Ln,m^-ff . . .ƒ£({»}, {m))${m)d{m}. 

The elements Ln,m are functions that can be expressed in terms of 
pn+m{n+m}, Pn+m-i{n+m — 1}, etc., that is in terms of the probabil­
ity densities, pM{/x}, for l^fx^n+m. 

(33) Ln,m = Lntm(pn+m{n + m\ , pn+m-1 { ft + fft ~ 1 } , • • • ) . 

If the elements Ln,w were known this could be used for a perturba­
tion calculation. For instance, if the potential UN were written as 

(34) UN - UP + X £ A '<) + X Z E A ' « , * ) + • • • , 

and the operator O as O— —kT(d/dK)\-^ then the functions ^„ 
would give the effect, in first order, of the perturbations due to $,0) 

on the functions Gn. 
Actually the functions Gn{n} composing the elements Ln,m are 

exactly the unknowns that we wish to determine. Equation (31), 
then, is only of value if the operator O is so chosen that there is a 
functional relationship between the functions ypn and the pn, and this 
is the trick which has been used by Yvon, and by Kirkwood. I will 
discuss this in more detail later. 

One remark may be inserted here. The determination of pi(ri, r%) 
as a function of z and T is adequate also for a determination of P , and 
hence all other thermodynamic functions, since P is given by the 
virial theorem as an integral involving the forces between pairs of 
molecules multiplied by the pair density. 

However, equation (1) can be solved for the functions G$ in 
terms of the functions GN, and the solution is, 

(35) G r = E - ^ - f f • • • fGn+N{n + N}d{N}, 
ivèo NI J Jv Jv 

which can be readily checked by using one expression in the other 
and obtaining an identity, and which is adequate proof since the 
condition (6) requires that both series (1) and (35) are absolutely 
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convergent for finite V. The operation O on both sides of (35) results 
in the expression, 

(36) Y<°> = L<°*F, 

where the elements, L ^ , of L(0) are expressible in terms of (—zyeunlkT 

for ISvSn+m, in the same way that in,m depends on pM. Thus the 
elements L^ln are now known functions. 

Combining equations (31) and (36) one sees that 

(37) LLW = L^L = 1 

with 1 the unit matrix. The sums 

(37') 2^t LhmLmh = 2^ LktmLm,k = 1, 
m 

can now also be seen to converge for relatively small m values, for 
instance if k~l and m>13 there is no range of the coordinates {m} 
for which both Li,m(ri, {m}) and L^ i ({w} , ri) differ significantly 
from zero. 

A specialized form of equation (31) was first derived by Yvon in 
France, and a similar one by Kirkwood. Later Born and Green inde­
pendently derived the Yvon form. In all these cases the operation O 
involved one unique molecule, whose coordinates could be placed at 
the origin. Some renumbering of the matrix elements is necessary, 
and one then has, 

(38) Ln,m = Ln>m[pn+m+i{n + m + 1 } , pn+m> ' ' ' It 

instead of (33), in particular Li,i depends on pz(ri, rj} rfc). However the 
operator was so chosen that the functions $ 0 ) and \j/v bore known rela­
tions to G»0) and Gn, respectively. In the Yvon (and Born-Green) case, 

(39) O = - kTVo 

with Vo operating on the coordinate of the unique molecule whose 
coordinate can be taken at the origin, so that, 

(40) ^ 0 ) = Vu( | r |) , tAi = - kTV In P2( | r |). 

If the total potential, UN, is purely a sum of pair terms, equation 
(20), one has 

(41) ^ 0 > = 0, v > 1. 

The equations become, in. our notation, 
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(42) ft - Ln^T 

of which only the first, 

(42') ft = Lltlft
(0>, 

is actually considered. The matrix element, Li.i, now depends on p3 

as well as p2. Some assumption is necessary. The Kirkwood assump­
tion, 

(43) p3(ri, r2, r3) = p~3p2( | rx - r2 |)p2( | r2 - r3 |)p2( | r8 - iï |), 

that the number density of triples is the product of that for the three 
pairs, properly normalized, leads to a definite equation in (42'). 

The actual equation becomes 

(44) -kTv In p2(rx) = Vu(n) + p"1 ƒ p2(ri3) [p2(r3) - p2]vu(r9)drz. 

The similar equation with the Kirkwood operator has been solved 
numerically by Kirkwood, and the results are fair, in the sense of 
looking very much like the experimentally known function, p2. 

One would like to believe that this solution represents the first 
approximation to a method which could be carried out, in principal 
a t least, to any degree of approximation. Some light on this has been 
shed by the work of Liliane Sarolea. She has examined the reciprocal 
set of equations, which with ft0) = 0, v>l become, 

(45) #T = Z l&h 

(45') 0 = Z iZ^m. 
m 

The diagonal elements, Lw,n, contain a diagonal part, the Dirac 8-
function, so that it is convenient to define, 

(46) K = Li - 1, 

in which case we can write, 

(47) fc = * r - K?xh - E KZ*., 
m>l 

(47') ft. - - KZti - E K*Un. 
n>l 

Now the Kirkwood approximation of equation (43), if taken liter­
ally, also would require that ft = 0 for n> 1. One might thus consider 
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the sum which is the last term on the right of (47) to be at least small. 
If this sum were neglected entirely equation (47) becomes a linear 
integral equation of the Fredholm type in the one unknown function 

Sarolea has attempted to find the contribution due to this sum. She 
uses equation (47') to iterate the sum, and writes: 

h = ^i — S ̂ i , i ~ X) KltmKm,i 

(48) l 

+ Lu Lu Ki,mKntmKm,i — • • • > ^i = ^i — Mi,m. 
n>l m>\ J 

One then finds that the matrices Li.i and 1— M[® are reciprocal, 

(49) Zx,i(l - Ml°,l) = (1 - M™)Lltl = 1. 

Dr. Sarolea has completed the cycle by showing that the relation 
(49) is trivially satisfied, namely that the series represented by M[® 
of equation (48) is actually a power series in z whose analytical 
continuation beyond its first singularity does obey equation (49). 
However, in showing this, and using arguments similar to those out­
lined in our discussion of the virial method, equation (27), she has 
also shown that the series of equation (48) diverges at the values of 
z corresponding to the condensed phase. This most obvious method of 
attempting to improve the Kirkwood assumption seems to indicate 
that it is, at best, the first step in what one may term an asymptotic 
approximation. 

There is little reason to doubt that the Kirkwood solutons are 
approximately correct solutions to the problem. They are, however, 
difficult to obtain, and apparently not of very high accuracy to com­
pute the pressure or other thermodynamic properties adequately. 
In view of the Sarolea conclusions it is not easily apparent how they 
can be improved. In view of the generality of the matrix-integral 
equation approach one might hope that other methods of attack 
might possibly be found. However a new idea seems to be needed. 
Although the many particle number density functions, pn{n}, seem 
to be the most natural functions to choose for the description of the 
liquid structure they are difficult to visualize, and apparently impos­
sible to measure experimentally for n>2. Although the Kirkwood 
assumption of equation (43) that pz is proportional to the product of 
the three pair functions sounds highly plausible, it seems that all 
at tempts to improve the justification for it lead only to new demon-
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strations that it is far from being exact. The cell method concept, 
although simple to visualize, and relatively simple for numerical 
computation, seems to be inherently limited by its assumption at the 
outset of a long range order in the liquid. 

I t may be that some entirely new set of logically defined functions 
might be more fruitful than the number density functions pn , and 
might lead to both a more readily visualizable concept of liquid struc­
ture, and to a convergent analytical method of computation. At least 
one at tempt of this nature shows some hope in simplification of the 
equations, although using even less easily visualized functions. This 
is to employ the Fourier transforms of the number density functions. 
An operation similar to that used in obtaining the integral equations 
leads to a set of purely algebraic equations. However it is not clear 
that the equations obtained have any superiority over the integral 
equation method. 
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