RESEARCH PROBLEMS

10. R. Bellman: Probability theory.

Consider the recurrence relation $x_{n+1}=a x_{n}-b x_{n}^{2}+z_{n}, x_{0}=c$, where a and b are given parameters and the z_{k} constitute a set of random variables drawn from a common distribution. Determine the asymptotic behavior of $E\left(x_{n}\right)$ under various assumptions concerning a, b and the distribution of the z_{k}. (Received February 27, 1956.)

11. R. Bellman: Number theory.

The relation $\sum_{k \leqq N} 2^{\gamma(k)} \sim N \log N$ (an analogue of a classical device of S . Bernstein in probability theory), where $\gamma(k)$ represents the number of prime divisors of k, can be used to show that the number of numbers less than N which have more than $c \log \log N$ prime divisors is $O\left(N /(\log N)^{c \cos 2}\right)$ as $N \rightarrow \infty$. Can one substantially improve this estimate for large c ? (Received February 27, 1956.)

12. A. D. Wallace: A problem on minimax semi-groups.

Let M_{n} be the set of all $n \times n$ matrices whose entries lie in the closed unit interval and define a multiplication in M_{n} by $(\alpha, \beta)_{i j}=\operatorname{Max}_{k}\left(\operatorname{Min}\left(\alpha_{i k}, \beta_{k j}\right)\right)$. Clearly M_{n} is a topological semi-group which is homeomorphic with the n^{2}-cell. If S is a topological semi-group which is homeomorphic with an n^{2}-cell is it possible to give an abstract description of S that will identify it with M_{n} ? It would be useful to have such a description even at the expense of supplying S with a dual operation such as obviously exists in M_{n}. (Received April 27, 1956.)

