
AXIOMATIC APPROACH TO THE HOMOTOPY GROUPS 

SZE-TSEN HU 

1. Introduction. The history of homotopy groups traces back to the 
fundamental groups of Poincaré [9; 10; 14].* For a given topological 
space X and a given point x0 in X, the funnamental group ir\(X, x0) 
is denned by considering the loops in X with x0 as basic point, i.e., 
the continuous maps X: 51—+X of the circle S1 into X with a given 
point So of S1 mapped into x0. 

Replacing the circle S1 by a higher dimensional sphere 5W, Hure-
wicz [7] introduced the homotopy groups xw(X, x0) in 1935 which 
turned out to be very useful and prolific. In 1941, relative homotopy 
groups Tn(Xy A, Xo), n è 2, of a topological space X modulo a subspace 
A Sit a, given point x0 were introduced by a joint paper of Hurewicz 
and Steenrod [4] and also independently by J. H. C. Whitehead [ ló] . 
These groups are denned by considering the continuous maps of an 
w-dimensional cell En into X with the boundary sphere Sn~1 mapped 
into A and a given point So of 5 n _ 1 mapped into Xo. 

For each w ^ 2 , a boundary homomorphism 

d:wn(X, A y xo) —> Wn-i(A, Xo) 

is defined by taking restrictions of the maps on the boundary sphere 
S"-1 of the cell En. 

For any continuous m a p / : (X, A, #0)—"KF, B, y0), an induced 
homomorphism 

/*:?Tn(X, A, Xo) - » 7Tn(F, £ , y0) 

is defined by means of composition. 
These are the entities of the so-called homotopy theory [5]. One 

observes that the homotopy theory looks quite like a homology 
theory. 

Since Eilenberg and Steenrod [2] established their celebrated 
axiomatic approach to homology theory in 1945, it has been a natural 
problem to ask whether a similar approach is possible for homotopy 
theory. 
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1 Numbers in brackets refer to the bibliography at the end of the paper. 
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Because of the obvious similarity between homotopy theory and 
homology theory, one would naturally first ask whether the axioms 
of Eilenberg and Steenrod hold in homotopy theory. A check of the 
axioms shows that all but one of the axioms are satisfied. The excep­
tion is the excision axiom. Simple examples can be constructed where 
the excision axiom is violated. See [13, p. S3], 

Steenrod, in his book [13], suggested that a candidate to replace 
the excision axiom might be the fibering theorem in the theory of 
fiber bundles [13, p. 90, Theorem 17.1 ]. His conjecture is almost 
completely correct except that the notion of fiber bundles is too 
strong to include the spaces needed in the various constructions con­
tained in the uniqueness proof unless the category of spaces is re­
stricted to consist of all CW-complexes only. 

If, in SteennxTs conjecture, one replaces fiber bundles by fiber 
spaces in the generalized sense of Serre [ i l , p. 443], then a complete 
axiomatic approach may be established. In the present address, such 
an axiomatic approach will be sketched.2 In fact, only a very special 
kind of fiber space will be used, namely, the space of paths. 

2. Preliminaries. By a triplet (X, A, x0), we mean a topological 
space X, a nonvacuous subspace A of Xy and a point x0 in A. If 
A =Xo, then the triplet (X, A, x0) will be simply denoted by (X, x0) 
and may be considered as a pair consisting of a topological space X 
and a point Xo in X. 

Let (X, A, Xo) be a given triplet. Consider the set P{X) of all path-
components of X. The path-components of X containing points of 
A form a subset O of P(X). If we identify O to be a single point, we 
obtain a quotient set P(X, A) which will be called the set of path-
components of X modulo A. If A —x0l then PCX, A) ~P(X). 

Next, let U denote the space of all paths in X issuing from x0; 
that is to say, U consists of the continuous maps a: I—+X with 
(r(0)=Xo, where / = [0, l ] denotes the closed unit interval, and is 
topologized by the compact-open topology. There is a natural map 
p: U-+X defined by £(cr)=<r(l). Let C = p~l(A) and u0 denote the 
degenerate path uQ(I) =# 0 . Thus we obtain a triplet (£/, C, u0) called 
the associated triplet of (X, A, x0). The map p defines a continuous 
map 

p:(U, C, uo)-*(X, A,x0) 

called the associated projection. 

2 The essential idea of this axiomatic approach was given independently by 
J.-P. Serre and J. Milnor. See [17]. 
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Let (F , B, y0) be a second triplet and l e t / : (X, A, x0)—»(F, B, y0) 
be a given continuous map. Since ƒ maps the path-components of X 
into those of F, it induces a natural induced transformation 

f*:P(X,A)->P(Y,B) 

in an obvious way./* maps the neutral element of P(X, A) into that 
o f P ( F , B). 

Let (F , D, Vo) denote the associated triplet of (F , B, y0) with the 
associated projection 

r:(V,D,vo)->(Y1B1y0). 

Then ƒ induces a continuous map </>: (U, C, w0)--»(F, D, v0) defined by 
<j)(cr) —f<r for each a in U. Obviously, fp=<t>r holds in the following 
rectangle 

(U, C, uo) -^ (F, A vo) 

ÏP tr 
(X,A,xo)l>(Y,Btyo). 

3. Homotopy theories. A homotopy theory 

consists of three functions 7r, * and d described as follows. 
The first function w associates with each triplet (X> A, x0) and each 

integer m ^ O a n abstrat set 7rw(X, A, x0) ; we require that 7r0(X, A, #0) 
be the set P(Xy A) of path-components of X modulo A and that 
Trm(X, A, XQ) be a group in each of the following cases: 

(HG1) « à 2 . 
(HG2) m = l and i l = * 0 . 
(HG3) m = 1 and (X, ^4, x0) is the associated triplet of some triplet 

of the form (R, r0, r0). 
Note. In the case (HG3), WQ(A, X0) is a group with usual multiplica­

tion among classes of loops. 
The second function * associates with each continuous map 

ƒ : (X, A, Xo)—•»( F, 5 , y0) and each integer m ^ O a n induced transforma­
tion 

/*:?rm(X, 4 , xo) -> 7rm(F, J5, y0). 

We require that ƒ* should be the natural induced transformation 
defined in §2 in case m = 0 and tha t /* should be a homomorphism in 
each of the following cases: 

(IT1) m £ 2 . 
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(IT2) m = l, A = x0 and B=y0. 
(IT3) m = l, (X, 4 , x0) is the associated triplet of some triplet 

(Ry r0, rQ)y ( F, 5 , ^0) is the associated triplet of some triplet (5, So, So), 
and ƒ is induced by a continuous map (j>: (Rt r^)—»(S, s0). 

(IT4) m — \yB = yo, (X, .4, x0) is the associated triplet of ( F, Bt y0), 
and ƒ is the associated projection. 

Note. In the case (IT3), ƒ*: 7r004, #0)—> ô(By ;y0) is also a homo­
morphism. 

The third function d associates with each triplet (X, Af x0) and 
each integer m>0 a boundary operation 

d'.TTm ( X , ^4, Xo) ~> 7ÏW-1 0 4 , Xo) J 

we require ô to be a homomorphism in each of the following cases: 
(B01) m^2. 
(B02) m = 1 and (X, A, x0) is the associated triplet of some triplet 

(Ry r0, r0). 
Furthermore, the collection H= {wy * ,#} must satisfy the follow­

ing seven axioms. 

AXIOM I. If f is the identity map on a triplet (X, At x0), then ƒ* is 
the identity on 7rm(X, At x0). 

AXIOM II . Iff: (X, A, x 0 ) -*(F, 5 , y0) and g: (F , 5 , y0)-»(Z, C, *0) 
are continuous maps y then (&ƒ)* =£*ƒ*. 

AXIOM I I I . /ƒ the continuous maps f \ (X, ^4, x0)—>(F, 5 , 3/0) öwd 
g: (^4, x0)~^(J5, y0) are related by g=f\ (At x0), then df*=g*d. 

The foregoing three axioms are called the algebraic axioms. 

AXIOM IV (Homotopy Axiom). If the continuous maps ƒ, g: 
(X, Ay x0)—>(F, By y 0) (it'e homotopic, thenf^—g^. 

Let (X, Ay XQ) be any given triplet. Then the inclusion maps 
i: (Ay Xo)—KX, Xo) and j : (X, x0)—>(X, Ay x0) together with the 
boundary operations d give rise to a beginningless sequence 

7* à i* y* d 

• • • - - > 7Tm+l(X, yl, Xo) —> 7Tm(A , X0) —» 7Tm(X, X0) —> 7Tm(X, -4, X0) ~» • • • 

• • • —> 7Ti(X, Ay Xo) —» 7ToC4, Xo) —> 7To(X, Xo) —> Xo(X, ^4, Xo) 

which will be called the homotopy sequence of the triplet (X, Af x0) 
in the homotopy theory H. 

AXIOM V (Exactness Axiom). The homotopy sequence of any triplet 
(Xy Ay xo) is weakly exact. 
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This means that, if 7rm(X, x0) = 0 for all m^O, then d: 7rm(X, A, x0) 
«7Tw_i(^4, Xo) for every m > 0 . Here, 5 = 0 denotes that the set S con­
sists of a single element and r : M^M denotes that the transforma­
tion r maps M onto N in a one-to-one fashion. 

AXIOM VI (Fibering Axiom). If (U, C, u0) is the associated triplet 
of (X, A, x0) and if p: (U, C, uo)—>(X, A, Xo) is the associated projec­
tion, then 

p*:TTm(U, C, Uo) « 7TW(X, A,Xo), M > 0. 

AXIOM VII (Dimension Axiom). If X = x0, then wm(X, x 0 )=0 for 
every m^rO. 

Let H= {T, *, 3} be a homotopy theory. The group 7rw(X, A, x0)f 

m ^ 2 , is called the mth relative homotopy group of X modulo A at the 
basic point xo (in the homotopy theory H) ; and the group irm(X, #0), 
m ^ 1, is called the mth (absolute) homotopy group of X at the basic 
point xo. In particular, wi(X, x0) is usually called the fundamental 
group or the Poincarê group of -X" at the basic point x0. For complete­
ness, we shall also call 7rm(X, A, x0) the mth relative homotopy set of X 
modulo A a t x0 and 7rm(X, #0) the mth homotopy set of X at x0 for 
every w ^ O . 

4. Properties. Most of the elementary results in homotopy theory 
can be deduced right from the axioms. Precisely, for any given homot­
opy theory 

# = {*,*, d}, 
we shall give in the present section a few properties of H as conse­
quences of its definition given in §3. 

(4.1) For every triplet (X, A, x0) and every m ^ O , Tm(X, A, x0) is 
nonempty and contains a special element 0 called the neutral element of 
7TW(X, A, XQ). 

In fact, 0 is the neutral element of P (X , A) defined in §2 if m = 0. 
For m > 0 , 0 is the image under j * of the group-theoretic neutral ele­
ment Of 7Tm(X, Xo). 

(4.2) If f: (X, A, xo)—+(Y, B, y0) is a homotopy equivalence, then 
ƒ*: 7rw(X, A, Xo)-7Tm(Y1 Bt y0) for every w ^ O . 

As immediate consequences of (4.2), we obtain the following three 
assertions: 

(a) For every m^0, Tm(X, A, x0) is an invariant of the homotopy 
type of the triplet (X, A, x0). 

(b) If A is a deformation retract of X, then i* : irm(A, x0) ^Tm(Xf x0) 
for every m ^ O . 
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(c) If X is contractible to the point x0, then 7rw(X, x0) = 0 for every 

Now let (X, A, Xo) be a given triplet. Consider the associated 
triplet (£/, C, u0) of (X, A, x0) and the associated projection p: 
(U, C, «o)~»(X, Ay x0). We have a diagram 

p* à 
X m (X , Ay Xo) <~ Tm(U, C, Uo) —> X,n-i(C, ^o) 

for every m > 0 . According to the fibering axiom, we have p*: 
wm( U, C, uo) «7rM(X, A, Xo). Hence we obtain a natural transformation 

v = d̂ >* lwm(X, Ay Xo) —> 7rw_i(C, ^o) 

for every m > 0 . In the cases (HGl) through (HG3), p is obviously 
a homomorphism. 

(4.3) v\Tcm(Xy Ay Xo) « Tm-i(Cy uo) for every m > 0. 

The special case A =x0 is of importance. In this case, C becomes 
the space of loops in X with basic point x0 and p is an isomorphism of 
wm(Xy Xo) onto 7rm-.i(C, Uo) for every m > 0 . 

Next, let (Xy Af x0) be a given triplet and F be any fiber space (in 
the sense of Serre) over a subspace X0 of X relative to a projection 
ƒ: F—»X0. Let B~f~~l(A) and pick a point ^oG/_1(^o). Thus we ob­
tain a triplet ( F, 5 , ^0) and a continuous m a p / : ( F, 5 , yo)—»(X, AyX0). 
If Xo contains the path-component of X containing x0, ƒ will be called 
a fibering map. 

(4.4) T H E FIBERING THEOREM. If f: (F , J5, 3/0)—>(X, Ay x0) is a 
fibering map y then f*: 7rm(F, Bt y0) «7rm(X, Ay x0) for every m > 0 . 

If (Uy Cy uo) denotes the associated triplet of (X, At x0), then it is 
well-known that U is a fiber space over the path-component of X con­
taining Xo and hence the associated projection£ : ( Z7, C, w0)—»(X, A, x0) 
is a fibering map. Therefore, (4.4) is a generalization of the Fibering 
Axiom. 

Let Xo denote the path-component of X containing x0 and A0 

= i r \ J 0 , then a direct consequence of (4.4) is that the inclusion map 
i induces i*: 7rm(X0, A0, x0) ~wm(Xy A, x0) for every m>0. 

By a triple (Xt At B)t we mean a topological space X together with 
two nonvoid subspaces A and B such that A ~Z)B. Pick a basic point 
Xo in B. The inclusion maps 

ï:(A, By xo) C (X, By xo), j : ( X , Bf x0) C (X, ^ , x0) 

give rise to the induced transformations H and J*. On the other hand, 
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the inclusion map k: (A, Xo)Q(A1 B, Xo) has the induced transforma­
tions &*. Define a boundary operation 

dlTm(Xt A, xo) —> 7rm-i(A, B, xo) 

for every m > 0 by taking the composition d = k*d of 

a jfe* 
wm(X, A, Xo) —» 7rm-i(^4, #o) —» xm_i(-4, .5, Xo). 

Further, let 0 denote a trivial set consisting of a single element called 
its neutral element and let d: 7r0(X, A, Xo)—>0 denote the trivial trans­
formation. Thus we obtain a beginningless sequence 

J* à î* J* ^ 
• • • ->7rm+i(X, ^4, Bo)-*ff«C4, B, Xo)-*Tm(X, B, Xo)->wm(X, A, Xo)-+ • • • 

. . . _>To(A,B t Xo)—>iro(X, B, xo)—^7To(X, ^4, #o)—»0 

called the homotopy sequence of the triple (X, A, B) at the basic point 
x0. If J5 =#o, then this reduces to the homotopy sequence of the triplet 
(X, A, Xo) augmented on its right end by a trivial set 0. In this se­
quence, every set has a specific neutral element. By the kernel of a 
transformation in this sequence, we mean the inverse image of the 
neutral element. 

(4.5) T H E EXACTNESS THEOREM. The homotopy sequence of any 
triple (X, A, B) at any basic point #0£-B is exact; that is to say, the 
kernel of every transformation in the sequence coincides with the image of 
the preceding transformation. 

Note. (4.5) strengthens as well as generalizes the Exactness Axiom. 

(4.6) T H E COMMUTATIVITY THEOREM. wm(X, A, x0) is an abelian 
group in each of the following cases: 

(CI) m = l, X is an H-space [ l l , p. 474], with x0 as a two-sided 
homotopy unit, and A =x0 . 

(C2) m = 2 and (X, A, x0) is the associated triplet of a triplet of the 
form (R, r0, r0). 

(C3) m = 2 and A=x0. 
(C4) m>2. 

REMARK. If n^O is a given integer and if H= {ir, *, d} is defined 
only for the dimensions m S n such that the axioms of §3 are satisfied 
for these dimensions, then the assertions in this section are also true 
for these dimensions. In fact, only these dimensions are used in the 
proofs. 
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5. Existence. The purpose of this section is to prove the existence 
of a homotopy theory. In fact, we shall construct a homotopy theory 
H= {x,*, 9} by induction as follows. 

According to the definition, TTO(X, A, x0) and ƒ*: 7r0(X, A, x0) 
—»7To(F, B, y0) are well-defined for every triplet (X, A, x0) and every 
continuous m a p / : {X, A, x0)—»(F, B, y0). 

Let w ^ l be a given integer and assume that we have already 
constructed the homotopy sets Tm(X, A, x0), for each m <n and triplet 
(X, A, Xo), together with the induced transformations ƒ* and the 
boundary operations 3 on these homotopy sets, such that all condi­
tions and axioms are satisfied. 

First, let us construct the homotopy set irn(Xt A, x0) of a given 
triplet (X, A, x0). Consider the associated triplet (£7, C, UQ) of 
(X, A, XQ) and the associated projection p: (Z7, C, u0)~>(X, A, x0). 
We define 

( 5 . 1 ) 7Tn(X, A, Xo) = 7Tn-l(C, U0). 

Next, let us define the boundary operation d: Tn(X, A% XQ) 
—»7rn-_iC4, Xo). Let q=p\ (C, u0). Then we define 

( 5 . 2 ) d = 0* : 7Tn-l(C, Wo) ~> 7Tn- l(4, *o). 

Finally, l e t / : (X, A% x0)—>(F, 5 , y0) be a given continuous map. 
We shall construct the induced transformation ƒ*: 7rn(X, ^4, x0) 
—>7TW(F, B, y0) as follows. Let (V, D, v0) denote the associated triplet 
of (F , B, yQ) with associated projection r: (F , Z), z/0)—>(F, B, yQ). 
According to §2, ƒ induces a continuous map<£: (£/, C, u0)~»(F, Z>, Uo). 
Let ^ = 0 | (C, ^o). Then we define 

(5.3) ƒ* = ^*:xn~i(C, m) -> T«-I(JD, v0). 

I t is verified that all the conditions and axioms in §3 are satisfied. 
This completes the inductive construction of a homotopy theory H 
= {x, *, d}. This theory i J will be called the natural homotopy theory. 

6. Uniqueness. Two homotopy theories H= {T, *, 5} and JET' 
= {x', #, ö'} are said to be equivalent if there exists, for each triplet 
(X, A, Xo) and each m ^ O , a transformation 

hm:Tm(X, A, xo) —> 7rm(X, -4, #o) 

satisfying the conditions: 
(El) ho is the identity on T0(X, A, x0) =7r0' (X, A} x0). 
(E2) /zm is a homomorphism if m ̂  2 or if m = 1 and -4 =x0 . 
(E3) Am: 7rm(X, ^4, x0) ^wf

m(Xf A, x0). 
(E4) A^/*=/#Am. 
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(ES) h^d-d'hm. 
A collection of transformations h = {hm} satisfying the conditions 

(El) through (E5) is called an equivalence between H and H' and is 
denoted by h: H~H'. 

We are going to prove the uniqueness theorem that any two homo-
topy theories H and H' are equivalent. For this purpose, we shall con­
struct an equivalence h: H^Hf as follows. 

The transformation ho is defined by (El ) . Let n è> 1 be a given inte­
ger and assume that we have already constructed the transformations 
hm for each m <n and each triplet (X, A> Xo) such that (El)-(ES) are 
satisfied. Let us construct hn as follows. 

Let (X, A, Xo) be any triplet. Consider the associated triplet 
(£/, C, UQ) of (X, A, Xo) and the associated projection p: (£/, C, Uo) 
—*(X, A, Xo). According to the Fibering Axiom, we have 

p*:Wn(U, C, Uo) « XW(X, A, Xo), pilTn (U, C, Uo) - * 7T» ( X , A, Xo). 

It is well-known that U is contractible to the point u0; hence 
7Tm(£7, Uo) = 0 for every w ^ O by the Axioms I, II , IV and VII. Ac­
cording to the Exactness Axiom, this implies 

dlTn(U, C, Uo) « 7Tn~l(C, UQ), d'llTniU, C, Uo) « T£-\{C, Uo). 

By our assumption of induction, we have 

^n-l*n*n-l(C\ Uo) « 7Tn-l(C, Uo). 

Hence we may define a transformation 

hn:irn(X, A, Xo) -> Wn (X, A, Xo) 

by taking the composition 

hn = ptd'-lhn-ldp* . 

I t can be verified that hn satisfies the conditions (El) through (ES). 
This completes the inductive construction of h = {hm} and proves the 
uniqueness theorem. 

The uniqueness theorem shows that the natural homotopy theory 
constructed in §5 is essentially the only homotopy theory. 

The equivalence h = {hm} constructed above will be called the 
natural equivalence between the homotopy theories H and H'. 

7. The uniqueness of equivalence. The purpose of this section is 
to show that the natural equivalence constructed in §6 is the only 
equivalence3 between any two given homotopy theories H= {ir1 *, ö} 

8 As a remark given by A. D. Wallace at the meeting, this means that there is a 
unique way to prove the uniqueness theorem. 
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and H ' - { T * , # , d ' } . 

By an admissible transformation 

k~ {km}:H->H' 

of H into Hf, we mean for each triplet (X, A, x0) and each integer 
m è O a transformation 

km:irm(X, A, xo) —> TT1(X, 4 , #0) 

satisfying the conditions: 
(ATI) ko is the identity. 
(AT2) kuj*=fikm. 
(AT3) k^d-d'k». 
By (El ) , (E4) and (ES), every equivalence between H and JET is an 

admissible transformation. Conversely, we shall prove that every 
admissible transformation k coincides with the natural equivalence h, i.e., 
km = hm for every m § 0 . 

By definition, we have ko = ho* We shall prove the assertion by in­
duction. Let n > 0 be a given integer and assume that km = hm for every 
w < n . We are going to show that kn~hn. 

Let (X, Ay Xo) be any triplet. Consider the associated triplet 
(U, C, Uo) of (X, A, Xo) and the associated projection p: (U, C, u0) 
~-»(X, A, Xo). In the following diagram 

p* à 
1Tn(X, A,Xo)<- Tn(U, C, Uo) - * 7rV-i(C, W0) 

fen fe»-l = A n _ l 
p# 

Tn(X, A,Xo)<~ Tn(Ut C, Uo) —> * n - l ( C , Wo) 

we have commutativity in both rectangles as required by (AT2) and 
(AT3). Hence we obtain 

kn = ptknp* * ptd'^hn-ldp'* = kn. 

This result implies that the natural equivalence h is the only 
equivalence between H and H'. Furthermore, in order to construct 
geometrically the natural equivalence between two homotopy theo­
ries given by geometric definitions, it suffices to establish an admis­
sible transformation by means of some natural geometric method. 

8. The role of the basic point. In this section, we shall continue 
our axiomatic approach and study the role played by the basic point 
in a homotopy theory H= {x, * , d}. 

Let us consider a given space X and two given points #0, #1 con­
nected by a path 



500 S T. HU [September 

all—>X, <r(0) = Xo, <r(l) = X\. 

By definition, we have TQ(X, X0) =P(X) = 7TO(X, x\). Further, since 
#o and Xi are contained in the same path-component of X, the neutral 
element of wo(X, x0) is the same as that of TTQ{X, XI). For the relations 
between the homotopy groups Tm{Xy x0) and 7rm(X, Xi), m ^ l , let us 
consider the spaces of loops WQ, WI in X with basic points a t x0, X\ 
respectively. Let WQ&WQ and WiÇzWi denote the degenerate loops. 

The path <r induces a continuous map £: W\—>W0 defined as follows: 
for each wÇzWi, £(w)Ç:Wo is the loop defined by 

s<x(3t)t if 0 g ^ 1/3, 

[*(«0](O = < w(3< ~ 1), if 1/3 ^ tS 2/3, 

V(3 - 3t) if 2/3 g / ^ 1. 

On the other hand, cr also induces a path 77: J—»W0 defined as follows: 
for each real number s £ J , rj(s) £ Wo is the loop defined by 

M3st), HO^tS 1/3, 

fo«](0 = <e(s), if 1 / 3 ^ ^ 2 / 3 , 

M 3 s - 3rf). if 2/3 ^ tg 1. 

Then, obviously we have 77(0) =Wo and 77(1) = £(wi). 
By a system of operations in a homotopy theory i ? = {71-, *, a } , we 

mean for each path <r: ƒ—»X in any topological space X and each 
integer m è 0 a transformation 

<rm: 7rm(X, #1) —> irm(X, x0), x0 = (r(0), xx = <r(l) 

satisfying the conditions: 
(501) (To is the identity on 7r0(-X", #i) =7r0(X, x0). 
(502) If w > 0 and if £: (TFi, « O - ^ W , $(«*)) and 9: I->TF0 are 

induced by <r, then commutativity holds in the following diagram 

Tm(X, Xi) > 7TW(Z, Xo) 

iv iv 
TTm-.l(Wh Wx) • Vm-l(Wo, f(Wi)) ~ ^ - > Tw-iCPTof Wo) 

where v denotes the natural transformation. 
According to (4.3), v~l is well-defined. Hence we obtain 

(8.1) <rm = v-him-i&v. 

I t is easy to see that am is a homomorphism if m > 0 . By (SOI) and 
(8.1), the inductive proof of the following theorem is obvious. 
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(8.2) In any given homotopy theory H= {T, *, d}, there exists one 
and only one system of operations. Furthermore, for any two given 
homotopy theories H and H', the natural equivalence h: H^H' com­
mutes with the operations in H and H'. 

The usual general properties of the system of operations in i ï c a n be 
deduced from (SOI) and (S02) without using the traditional geometric 
meaning of these operations. Hence one may prove the following as­
sertion. 

(8.3) For any given topological space X and any given integer m ^ l , 
the collection of the homotopy groups {irm(X, x0) | x 0 £ X } in a homotopy 
theory H= {ir, *, 3} forms a local system of groups in X in the sense of 
Steenrod. 

Consequently, if a : J—>X is a path joining x0 to Xi, then am : Trm(X, Xi) 
«7rw(X, x0). If X is path wise connected, then all the groups 7rm(X, x0)t 

XoÇzX, are isomorphic and the abstract group 7rm(X) which is iso­
morphic to 7rm(X, xo) for each X 0 6 I will be called the mth (abstract) 
homotopy group of X. 

Another consequence of (8.3) is that for each m ^ l , the funda­
mental group 7Ti(X, Xo) acts on the left of wm(Xt x0) as a group of 
operators. In the special case m = l , one can easily see that, for any 
two elements g and h in iri(X, xQ)t h acts on g as follows: 

Kg) = hghrK 

Next, let us construct the operations in the relative homotopy sets. 
Consider a given topological space Xt a given subspace A of X, and 
two given points xQ, X\ connected by a path a: I—>A with <r(0) = x 0 and 
cr(l) =#1. 

Let (J7o, Co, Uo) and (Ui, G, Ui) denote the associated triplets of 
(X, A, Xo) and (Xy A, Xi) respectively. The path a induces a continu­
ous map £: d~>C0 defined as follows: for each uÇz&, %(U)GCQ is the 
path defined by 

<r(2t), if 0 g t g 1/2, 

\u(2t - 1), (It - 1), if 1/2 :g tg l. 

On the other hand, a also induces a path 77: ƒ—»Co defined as follows: 
for each s £ 7, Î ) ( 5 ) £ C 0 is the path defined by 

(cr(2st '<r(2rf), if Ogtg 1/2, 

if 1/2 ^ / S 1. 

Obviously we have rj(0) =u0 and rj(l) =£(«i). 
For each m ^ O , we define an operation 
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<rm: 7Tm(X, Ay %x) - * 7TW(X, A, Xo) 

as follows: <ro is the identity on TTQ(X, A, Xi) ==7r0(X, ^4, x0)\ if w > 0 , 
then (rw is uniquely denned by the commutativity of the following 
diagram 

7TW(X, A, Xi) > Tm(X, A, Xo) 

iv [v 
s* f\m— 1 

7r™_i(Ci, Ui) > ÎTm-l(C0, %(Ui)) > 7TTO-.i(Co, «o) 

where v denotes the natural transformations. Hence, 

<Tm = V-hlm-it+V (fît > 0 ) . 

One can easily establish the usual general properties of these opera­
tions. In particular, <rm: Tm(X} A, X\) «7rm(X, A, x0) and, if m^2, /&£ 
relative homotopy groups {irm(X, A, XQ)\XOÇZA } form a local system of 
groups in A. Consequently, TI(A, XQ) acts on the left of rm(X, A, x0) 
as a group of operators for every m §:2. 

If A is pathwise connected, then, for a given w § 2 , all the groups 
7rm(X, A, Xo), XOELA, are isomorphic. The abstract group 7rw(X, 4 ) 
which is isomorphic to irm{X1 A, x0) for each XoÇzA will be called 
the wth (abstract) relative homotopy group of X modulo A. 

9. Remarks and problems. Although a homotopy theory looks 
quite like a homology theory, they differ in the following aspects: 

(1) The excision axiom holds in homology theory but not in homot­
opy theory; on the other hand, the fibering axiom holds in homotopy 
theory but not in homology theory. 

(2) The uniqueness of homotopy theory is proved for all possible 
triplets, while that of homology theory is proved only for triangulable 
pairs. For general topological spaces, there are essentially different 
homology theories. 

(3) In the homotopy sets Tm(X, A, x0), the basic point XQ plays an 
important role, while the homology groups Hm(X, A) do not depend 
on any basic point. 

(4) All the homology groups Um{X, A), ra^O, are abelian groups. 
On the other hand, Tri{Xy A, x0) is in general a nonabelian group, and 
7To(-X", A, Xo), 7Ti(X, A, Xo) are in general not groups. 

Hence, it is natural to expect that the homotopy groups are in 
general different from the corresponding homology groups. This was 
known to Poincaré for the fundamental groups. The first higher di­
mensional example was given by Hopf [4], namely, TTZ(S2) « Z while 
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Hz(S2) = 0. Since then, numerous examples have been given in the 
literature. 

Since the excision axiom does not hold in the homotopy theory, 
it is desirable to invent something which would measure the extent 
by which the excision axiom fails. This was solved by Blakers and 
Massey [ l ] by introducing their homotopy groups of triads. These 
groups as well as Freudenthal's suspension [3], can be conveniently 
defined in terms of spaces of paths [6], and hence can be fixed nicely 
into the present axiomatic scheme. 

However, there are important operations in homotopy theory, 
such as the Whitehead products [IS], which are defined by means of 
some specific geometrical constructions. So far, the author fails to 
present new definitions of these operations so that they might be 
fixed into the axiomatic scheme without appeal to the geometric 
representation of the homotopy groups. 

Originally the question of axiomatizing the homotopy groups was 
considered important because it was hoped that such an axiomatiza­
tion would lead to important new results or would simplify proofs of 
existing theorems. The proofs of the elementary properties of §4 and 
many others are improved by this axiomatization. However, it is not 
likely that the axiomatization will help to simplify the proofs of such 
highly geometric theorems as the homotopy addition theorem, etc., 
because these theorems are essentially of the geometric representa­
tions of the homotopy groups. 
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