A CLASS OF LATTICE ORDERED ALGEBRAS ${ }^{1}$

BY CASPER GOFFMAN

Communicated by Garrett Birkhoff, April 1, 1958

1. Our purpose is to characterize those lattice ordered algebras which may be represented as algebras of Carathéodory functions. This work is, accordingly, a sequel to [1] where the same problem was considered for lattice ordered groups. The rings considered here are more restrictive than those of Birkhoff and Pierce in [2], where an " F-ring" is shown to be isomorphic to a subring of the direct union of totally ordered rings (but the multiplication in [2] is not necessarily that which may be expected for functions; indeed, all products may be zero. In our case, the axioms compel the algebra multiplication to conform to that of the Carathéodory functions). Brainerd [3] has considered a class of algebras which have function space representations, but his emphasis is different from ours.
2. In this section, we define a Carathéodory algebra. Let B be a relatively complemented distributive lattice. Let E be the set of forms $f=a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}$, where $\alpha_{i} \in B, a_{i}$ real, $i=1, \cdots, n$. With $f \geqq 0$ if $a_{i} \geqq 0$ for all i, and addition and multiplication defined by $f+g=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i}+b_{j}\right)\left(\alpha_{i} \cap \beta_{j}\right)+\sum_{i=1}^{n} a_{i}\left(\alpha_{i}-\bigcup_{j=1}^{m} \beta_{j}\right)$ $+\sum_{j=1}^{m} b_{j}\left(\beta_{j}-\bigcup_{i=1}^{n} \alpha_{i}\right)$ and $f g=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j}\left(\alpha_{i} \cap \beta_{j}\right) \quad$ where $f=\sum_{i=1}^{n} a_{i} \alpha_{i}$ and $g=\sum_{j=1}^{m} b_{j} \beta_{j}, E$ is a lattice ordered algebra, which we call the algebra of elementary Carathéodory functions. Let \bar{E} be the conditional completion of $E . \bar{E}$ is the set of bounded Carathéodory functions. In order to define the general Carathéodory function, we need the notion of carrier. In a lattice ordered group, for every $x \geqq 0$, $y \geqq 0$, we say $x \sim y$ if $x \cap z=0$ when and only when $y \cap z=0$. The equivalence classes obtained in this way are called carriers (filets by Jaffard [4]) and form a relatively complemented distributive lattice. The equivalence class to which x belongs is called the carrier of x. In \bar{E}, consider pairwise disjoint sequences $\left\{f_{n}\right\}$ whose carriers have an upper bound, and consider the formal sums $\sum f_{n}$. With order, addition, and multiplication defined appropriately, these formal sums constitute a lattice ordered algebra-the Carathéodory algebra C generated by B. (For details on related matters see $[5 ; 6]$ and [1].)
3. Let R be an archimedean lattice ordered algebra. Then R is a lattice with positive cone P such that $x, y \in P, a \geqq 0$ real, implies

[^0]$x+y, x y, a x \in P$, and if $x, y \in P, y>0$, implies there is a real $a \geqq 0$ with $x-a y \notin P$. We say that R is totally complete if
(a) R is conditionally complete.
(b) every sequence of pair-wise disjoint elements in P, whose sequence of carriers has an upper bound, itself has an upper bound; hence, a least upper bound.

In addition to the archimedean hypothesis, the following condition is important for us.
A. If x, y, z are in P (i.e., $x \geqq 0, y \geqq 0, z \geqq 0$) then $(x y) \cap z=0$ if and only if $x \cap y \cap z=0$.

It is not hard to see that the Carathéodory algebra C is totally complete and satisfies A.
4. Before considering the main problem, we point out that for every totally complete vector lattice R, multiplication may be defined so that R is an algebra satisfying A. We outline the procedure.

Let $\left[u_{\alpha}\right]$ be a generalized weak unit [1] in R. Then, for every carrier α, there is a unique u_{α} with carrier α, and for every α, β we have $u_{\alpha} \cap u_{\beta}=u_{\alpha \cap \beta}$ and $u_{\alpha} \cup u_{\beta}=u_{\alpha \cup \beta}$. For every $x>0$ there is, by the total completeness of R, a pairwise disjoint sequence $\left\{u_{\alpha_{n}}\right\}$ and a sequence $\left\{a_{n}\right\}$ of positive reals, such that sup $a_{n} u_{\alpha_{n}} \geqq x$. For every $x>0, y>0$ let $u_{\alpha_{n}}, a_{n}$ be as above relative to x and $v_{\beta_{n}}, b_{n}$ as above relative to y. Let $\xi=\sup \left(a_{n} u_{\alpha_{n}}\right)\left(b_{m} v_{\beta_{m}}\right)$. Then define $x y=\inf \xi$ for all ξ obtained in this way. For any $x, y \in R$, define $x y=x^{+} y^{+}+x^{-} y^{-}-x^{+} y^{-}-x^{-} y^{+}$. It can then be shown that R is an algebra satisfying A. Moreover, if R has a weak unit, the resulting algebra has an identity.
5. We now let R be a totally complete lattice ordered algebra, satisfying A.

Lemma 1. If $x \geqq 0, y \geqq 0$ then $x y=0$ if and only if $x \cap y=0$.
Lemma 2. If $x \geqq 0$ then x and x^{2} have the same carrier.
Proof. $x \cap y=0$ implies $x \cap x \cap y=0$ implies $x^{2} \cap y=0$. Conversely, $x^{2} \cap y=0$ implies $x \cap x \cap y=0$ implies $x \cap y=0$. More generally,

Lemma 2'. If $x, y \geqq 0$ have the same carrier, then $x y$ also has this carrier.

Corollary 1. Every carrier is a semi-ring.
Since R is conditionally complete, for every $x, y \in R$, the projection y_{x} of x on y is defined.

Lemma 3. $x y=x y_{x}$.

The next lemma is important for us.
Lemma 4. If $x>0$ there is $y>0$ with $y x \geqq x$ and $z>0$ with $z x \leqq x$.
We outline the proof. From Lemma 2, the supremum of the carriers α_{n} of $w_{n}=\left(n x^{2}-x\right)^{+}$is the carrier of x. Let $\beta_{n}=\alpha_{n}-\alpha_{n-1}$ and let z_{n} have carrier β_{n}. If $y_{n}=(n x)_{z_{n}}$, the y_{n} are pair-wise disjoint. By the total completeness of R, sup $y_{n}=y$ exists. Then $y x \geqq x$. The proof of the second part is similar.

Definition. For every $x \geqq 0, u(x)=\inf [y \mid y x \geqq x]$ and $\bar{u}(x)$ $=\sup [y \mid y x \leqq x]$.

Lemma 5. For every $x \geqq 0, x=u(x) x=\bar{u}(x) x$.
Proof. $u(x) x \geqq x$. If $u(x) x>x$ there is $z>0$ with $z x<u(x) x-x$, whereby $(u(x)-z) x>x$, which is impossible.

Lemma 6. $[u(x)]^{2}=u(x)$ and $[\bar{u}(x)]^{2}=\bar{u}(x)$.
Proof. $[u(x)]^{2} x=u(x)[u(x) x]=u(x) x=x$ so that $[u(x)]^{2} \geqq u(x)$. Similarly, $[\bar{u}(x)]^{2} \leqq \bar{u}(x)$. But $\bar{u}(x) x=x$ implies $\bar{u}(x) \geqq u(x)$. However, $\bar{u}(x) \leqq u(x)$.

Corollary 2. $u(x)=\bar{u}(x)$.
Lemma 7. The carriers of x and $u(x)$ are the same.
Proof. By condition A.
Lemma 8. If x and y have the same carrier then $u(x)=u(y)$.
Proof. If $0<x<z<y$ and $x^{2}=x, y^{2}=y$ then $z^{2}=z$. Let α be the carrier of x and y. If $u(x) \neq u(y)$, there is $\beta<\alpha$ and $k<1$ such that, say, $k(u(x))_{w}<(u(y))_{w}$, where w has β as carrier. But then $\left[k(u(x))_{w}\right]^{2}$ $=k(u(x))_{w}$ and $k(u(x))_{w}=(u(x))_{w}$. This is impossible.

Thus there is a one-one correspondence $\alpha \rightarrow u_{\alpha}$ between the carriers and idempotents. There is a unique left identity for every carrier relative to the carrier; there is also a unique right identity.

Lemma 9. For every α, the associated right and left identities are equal.
Proof. Both are idempotents. The proof is then as for Lemma 8. We summarize:

Theorem 1. A totally complete lattice ordered algebra R satisfying A has a unique idempotent u_{α} with carrier α, for every α. The idempotent u_{α} is an identity (left and right) for all $x \in R$ whose carrier is $\leqq \alpha$.

Corollary 3. The family $\left[u_{\alpha}\right]$ is a generalized weak unit in R.

Proceeding as in [1], the algebra R can be reconstructed from the u_{α} and a one-one correspondence obtained between the elements of R and those of the space C of Carathéodory functions generated by the relatively complemented distributive lattice B of carriers in R. In this correspondence, each element $a_{1} u_{\alpha_{1}}+\cdots+a_{n} u_{\alpha_{n}} \in R$ is mated with the element $a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n} \in C$. It is then a routine matter to check that this correspondence preserves order, addition, and multiplication. We thus have:
Theorem 2. A lattice ordered algebra is isomorphic with the algebra C of Carathéodory functions generated by a relatively complemented distributive lattice if and only if it is totally complete and satisfies A; i.e., for $x, y, z \geqq 0,(x y) \cap z=0$ if and only if $x \cap y \cap z=0$.

The following conditions are closely related to A.
A^{\prime}. If $x, y \geqq 0$, then $x y=0$ if and only if $x \cap y=0$.
$\mathrm{A}^{\prime \prime} . R$ is an F-ring with no nonzero nilpotents.
Indeed, M. Henriksen has shown (oral communication) that conditions $A, A^{\prime}, A^{\prime \prime}$ are equivalent. Using this fact, and a completion theorem of Nakano [7] we obtain:

Corollary 4. An archimedean lattice ordered algebra which satisfies A, and is such that $\inf S=0$ and $x \geqq 0$ implies inf $x S=0$, is isomorphic with a subalgebra of a Carathéodory algebra.

We also obtain the following fact, which was proved in a different way for F-rings by Birkhoff and Pierce.

Corollary 5. An archimedean lattice ordered algebra which satisfies A has commutative multiplication.

References

1. C. Goffman, Remarks on lattice ordered groups and vector lattices, I. The Carathéodory functions, Trans. Amer. Math. Soc. vol. 88 (1958) pp. 107-120.
2. G. Birkhoff and R. S. Pierce, Lattice ordered rings, An. Acad. Brasil Ci. vol. 28 (1956) pp. 41-69.
3. B. Brainerd, On a class of lattice ordered rings, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 673-683.
4. P. Jaffard, Contribution a l'etude des groupes ordonnés, J. Math. Pures Appl. vol. 32 (1953) pp. 203-280.
5. C. Carathéodory, Entwurf filr eine algebraisierung des Integralbegriffs, Bayer Akad. Wiss. Math.-Nat. Kl. Abh. (1938) pp. 28-67.
6. D. A. Kappos, Ein Beitrag zur Carathêodoryschen Definition der Ortsfunktionen, in Booleschen Algebren, Math. Z. vol. 51 (1949) pp. 616-634.
7. H. Nakano, Modern spectral theory, Tokyo, 1950, pp. 148-154.

Purdue University and University of Oklahoma

[^0]: ${ }^{1}$ Supported by National Science Foundation grant no. NSF G-2267 on ordered systems.

