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The following lines describe some closely related results concerning 
the three subjects of the title. Detailed proofs will be given elsewhere. 

1. Spline functions. Let x^1 denote the truncated power function 
defined as xn~l if x ^ 0 and = 0 if x < 0 (n = 1, 2, • • • ). Let 
£„ 0> = 1, • • • , k) be a given finite sequence of increasing abscissae. 
By a spline function of degree n — 1 we mean a function of the form 

k 

(i) s»-i.*(*) = iVi(a) + E cv{x - &)+ , 

where Pn-i(x) is a polynomial of degree ^n — 1. Equivalently, this 
function may be defined by separate polynomials of degree ^ n — 1 
in each of the k + 1 intervals (—<*>, &), (&, £2), • • • , (£&, °°), such 
that the composite function has n — 2 continuous derivatives for all 
real x. For w = l we obtain a step-function, for n~2 a continuous 
broken-line graph and so on. The £„ are called the knots of the spline 
function. The reasons for the name "spline function" are explained in 
[5, p. 67]. 

By adding to the spline (1) the monomial xn we obtain a function 

(2) F(x) = *» + Sn-i,*(tf) 

which we call a monospline of degree n and knots £„. Both splines and 
monosplines become polynomials if &=0. Much of the familiar Alge
bra of polynomials disappears if k>0, as these systems are not closed 
with respect to multiplication. Fortunately much of the Calculus of 
polynomials survives such as the relations 

1 This paper was prepared partly under the sponsorship of the United States Air 
Force, Office of Scientific Research, ARDC, under a contract with the University of 
Pennsylvania. 
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d r 
— Sn-i,k(x) = Sn-2,k(%)> I Sn-l,k(x)d% = Sn,k(x), 
ax J 

with similar ones for monosplines. The periodic extension of period 
unity of the Bernoulli polynomial Bn(x), (O^xrg l ) , is a monospline 
of degree n having knots in all points of integral abscissae, an example 
which is familiar from the theory of the Euler-Maclaurin sum for
mula. 

We now procède to show that the so-called fundamental theorem 
of Algebra also holds for monosplines. However, due to the nature of 
these functions we must restrict ourselves exclusively to the real 
field. We begin by defining the multiplicity or order of a zero of (2). 

This notion being evident if the zero is not a knot of (2), we may 
assume that it is one, # = § say. Even now the meaning of a zero 
x = % of multiplicity <n — 2 is the usual one and we may therefore 
restrict our discussion to the case when 

F(& = F'® = • • • = F<«-*>(0 = 0. 

But then the function (2) has the form 

= iA(<x " ?)w~1 + ( x ~ *)n 'dx<s> 
\B(X - Ç)"-1 + (* - Öw if * > i,{A j* B), 

a representation which is valid in a neighborhood of £ whose end-
points are the nearest knots. 

We may now define the order of the zero # = £ as follows: 
DEFINITION. 1. If AB>0 we say that £ is a zero of order n — \. 
2. If AB < 0 we say that £ is a zero of order n. 
3. If AB=0 there are two subcases: 
3'. If B — A > 0 we say that £ is a zero of order n, 
3". If B —A < 0 we say that % is a zero of order w + 1. 
The following is readily seen: 1. The largest possible multiplicity 

of a zero of (2) is n+1. 2. F(x) changes sign at x = % or not, depending 
on whether the order of the zero is odd or even. 3. A zero of F(x) is 
also a zero of its derivative F'(x) of order by exactly one unit less than 
before differentiation. 

Our analogue of the fundamental theorem of Algebra is 

THEOREM 1. A monospline (2) can have at most n+2k zeros, counting 
multiplicities as defined above. Given arbitrarily the zeros X\<x%< • • • 
<x8 with corresponding multiplicities cti, a%, • • • , as, such that 

(3) aign+1, ( * = ! , • • « , s), 
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(4) £ «< = » + 2k, 
1 

there is a uniquely defined monospline (2), of degree n, and k distinct 
knots £i, • • • , %k, having the given set of zeros Xi of orders a», respec
tively. Thus n+2k plays the role of the "degree" of (2). 

If k = 0 Theorem 1 reduces to the familiar theorem for the field of 
reals. With k arbitrary, the cases when n — \ or n = 2 are easily 
established and furnish instructive examples for Theorem 1 which 
are readily solved graphically. The general case of Theorem 1 de
pends on a geometric result to which we now turn. 

2. Convex curves. Let T be a compact set in the 2^-dimensional 
euclidean space En and let K = K(T) denote the convex hull of I \ 
A well known theorem of Carathéodory states that every point p of 
K may be obtained as a centroid with positive masses of 2fe + l 
appropriately chosen points of T (see [2, pp. 35-36]). The deter
mination of the knots £i, • • • , £ * of a monospline (2) of given zeros 
(Theorem 1) does not depend on the solution of readily available 
algebraic equations, except if n = 1 or 2 and other special cases to be 
mentioned in §3. Rather the proof of their existence depends on the 
following refinement of Carathéodory^ theorem under very special 
circumstances which allow to reduce Carathéodory's number 2& + 1 
to Jfe + 1. 

We assume that V is a closed curve in En given in parametric form 
and not contained in a hyperplane. We say that T is convex in E2k 

provided that the curve T crosses no hyperplane more than 2k times. 
Let us now assume that our curve T is convex in E2k and let p be a 
point in the interior of K(Y). Under these special assumptions the 
following theorem holds: 

THEOREM 2. Given at will a point go on V, there exist k further points 
<Zi, • • • , g>» on T, such that p is a centroid of the k + 1 points go, qu ' • • » 
qu with positive masses. 

The case k = 1 of convex curves in the plane E% is obviously true. 
Another case of Theorem 2 familiar from the theory of the trigo
nometric moment problem is obtained if V is the special curve 

%l = COS /, #3 = COS 2/ , • • • , #2ft-l = COS kt, 

x2 = sin t, X* = sin 2t, • • • , x2k = sin kt, (0 ^ t ^ 2w). 

The proof of the general case depends on results obtained in [6, § l ] , 
and in a joint paper [ l ] with H. B. Curry. 
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3. Mechanical quadrature. I t should come as no surprise that 
monosplines are related to the problem of mechanical quadrature, for 
indeed the kernels which appear in Peano's form of their remainders 
are precisely monosplines (see [3]). This connection furnishes the 
occasion to mention two further examples illustrating Theorem 1. 

EXAMPLE 1. Let n = 2k. According to Theorem 1 a monospline 

(5) F(x) = x™ + S a - U * ) 

is uniquely defined if we preassign its n+2k — Ak zeros, none of 
multiplicity exceeding 2& + 1. We now prescribe these zeros to be 
x = — 1 and x = + 1 , each of multiplicity 2k. The resulting monospline 
(5) is easily found to be identical with the Peano-kernel in Gauss' 
formula of mechanical quadrature. In fact the knots £i, • • • , £* of 
(5) are the zeros of the feth Legendre polynomial. 

EXAMPLE 2. Let again n = 2k and consider 

(6) F(x) = x™ + S2k-i,k+i(x) 

which may have as many as 2fe+2(fe + l) = 4fc+2 zeros. We now pre
scribe these zeros to be x = — 1 and x — + 1 , each of multiplicity 
2& + 1 (notice that the requirements (3), (4), of Theorem 1 are veri
fied). The resulting monospline (6) is found to be identical with the 
Peano-kernel in Radau's formula of mechanical quadrature. (See [4, 
formula (24bis), p. 296]; also [7, p. 161, Example 2]). The knots of (6) 
are, besides ± 1 , the zeros of the derivative of the feth Legendre poly
nomial. 

A more general application of Theorem 1 yields the following two 
theorems: 

THEOREM 3. We are given two integers k and n such that 

(7) 1 ^ n S 2k 

and we set 

(8) r = 2k - n. 

We are also given r abscissae Xi such that 

(9) - 1 < xi < x2 < • • • < xr < + 1, 

where the set {#»•} is void if r = 0. 
There exists a uniquely defined quadrature formula 

(10) Z &ƒ({,) = f f(x)dx, 
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where 

(11) —1 < €1 < • • • < & < 1, Gi > 0, • • • , Gk > 0, 

and such that the relation (10) holds for every spline function of the form 

(12) ƒ(*) = Pn-i(x) + £ C<(* - Xi)l"\ 

i.e. of degree n — 1 and having the r preassigned knots (9). 

We wish to call (10) a quadrature formula of the Gaussian type for 
the following two reasons: First, if n — 2k hence r = 0, then (10) re
duces to Gauss' formula, as it must, since (12) now reduces to an 
arbitrary polynomial of degree 2& — 1. Secondly, notice that in the 
general case the spline function (12) depends on n+r = n + (2k — n) 
— 2k arbitrary parameters. In other words, we get a fe-point formula 
(10) enjoying the characteristic "double precision" for a preassigned 
set of 2k functions 

2 n—1 . .n—1 ., N 

1, X, X , - • • , X , {X — Xi)+ (l = 1, • • * , 2k — n). 

THEOREM 4. With assumptions (7), (8), (9), identical with those of 
Theorem 3, there exists a uniquely defined quadrature formula 

(13) E W , ) = C f(*)dx, 
i/~0 t / - l 

where 

(14) fo = ~ 1 < fi < • • • < f w < f* = + 1, -Ko > 0, • • • , Rk > 0, 

and such that the relation (13) holds f or every spline function of the form 
(12). 

We wish to call (13) a quadrature formula of the Radau type. In
deed, if n = 2k hence r = 0, then (13) reduces to Radau^ formula 
(loc. cit.). Also the "double precision" argument applies as before. 

The practical implications of Theorems 3 and 4 are as follows : The 
accuracy of the formulae of Gauss and Radau is well known (See 
Radau's paper [4, pp. 334-335] for an instructive series of numerical 
examples). A serious drawback for the practical computer is the 
irrationality of the knots £„(£?) and weights GV(RV). Theorems 3 and 4 
allow to construct quadrature formulae having simple rational knots 
and weights and sharing the accuracy of the Gauss and Radau 
formulae for any preassigned degree of exactness n in the range \Sn 
<2k. Some such formulae are already in common use. For instance, 
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the formula of G. F. Hardy (see [7, p. 151]) is a Radau type formula 
with &=4 and n = 6, a fact which I may be permitted to interpret 
as explaining its good accuracy. 
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