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In this paper the continuity of the derivative of an analytic func-
tion of a complex variable is proved in an elementary, or purely topo-
logical, fashion. That is, no use whatever is made of complex integra-
tion or equivalent tools. The desirability of such a proof has been
emphasized in Complex analysis by L. V. Ahlfors [1, p. 82], and even
more recently in Topological analysis by G. T. Whyburn [2, p. 89].
Our proof has been made accessible only by the extensive modern
development of the subject of topological analysis (see [2] for ra-
tionale and bibliography). The author wishes to express his appreci-
ation to Professor G. T. Whyburn for suggesting the feasibility of
attacking this problem at this time.

Throughout, we shall be concerned with a nonconstant complex
valued function f(z) defined and having a finite derivative at each
point of an open connected set E of the complex plane. We shall
employ Theorems A and B in the proof of the main theorem.

THEOREM A. A mnecessary and sufficient condition that f be a local
homeomorphism at 20 E is that f'(z0) be not zero [2, p. 85].

THEOREM B. If A and B are 2-manifolds without edges and f(A4)
=B 1is a light open mapping, then for any y&B and x&f~'(y), there
exist 2-cell neighborhoods U of x and V of vy such that f(U)=V and
the mapping f of U onto V is topologically equivalent to a power mapping
w=2z* on |z| <1, for some positive integer k [2, p. 88].

We shall also use Rouché’s theorem [2, p. 93], and the lemmas
which follow the next definition.

DEFINITION. Let {2:} be a sequence of points of E. A sequence {2:} of

1 This work was supported by a Summer Research Award from the Research
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points of E is called an f-companion sequence for {z;} if and only if
there exists o positive integer I such that, for each 1>1, z;5z; but

f@) =£(2:).

Note that it is clear from Theorem A that f'(2,) =0 if and only if
there exists a pair of f~-companion sequences converging to 2,. How-
ever, we will need a slightly stronger condition than this.

LeMMA 1. If f'(20) =0 and if U and V are 2-cell neighborhoods (as in
Theorem B) of zo and f(z0), respectively, such that f(U)=V and the
mapping f: U onto V is topologically equivalent to the mapping w=2z* on
| 2| =1 for some positive integer k, then k>1.

Proor. If k=1, then the mapping f: U onto V is topologically
equivalent to the identity mapping of |z| =1. Hence this mapping is
a homeomorphism and f is a local homeomorphism at 2, (noting,
from the proof of Theorem B as given in [2], that 2, is an interior
point of U). Thus, by Theorem A, f/(2,) 0.

LeMMA 2. A necessary and sufficient condition that f'(2,) =0 is that,
for each infinite sequence {z;} in E— {20} converging to z,, there exist
an f-companion sequence \%;§ in E— {zo} converging 1o 2.

Proor. Sufficiency. The existence of a pair of f-companion se-
quences converging to 3, precludes the possibility that f is a local
homeomorphism at 2. Therefore, f/(z0) must be zero, by Theorem A.

Necessity. Let D be an open 2-cell neighborhood of 2y with DCE
and such that f(z) #f(z0) for any s&D— {zo}. The existence of such
a D results from the “scattered inverse property” [2, p. 83]. The map-
ping f I D satisfies the hypothesis of Theorem B, so there exist 2-cell
neighborhoods UCD and VCf(D) of 2, and f(z), respectively, such
that f(U) =V and the mapping f: U onto V is topologically equiva-
lent to the mapping w=2* on |z| =<1, for some positive integer k. By
Lemma 1, k> 1, since f/'(20) =0. Let g denote the homeomorphism of
U onto |2| <1 and h the homeomorphism of |w| <1 onto V such
that f(z) =h([2(2) ]¥), for all 3& U. Consider now {g(z;)}. Since for at
most a finite number of subscripts can g(z;) =0, we assume that this
happens for none. There exists an I such that, for all >, 2;& U and,
for each of these, there existsa p;g(z:) with | p;| <1and p¥= [g(z:) ]*.
Let 2;,=g~%(p,), for each ¢>1I, and for ¢=1, - - ., I define %; arbi-
trarily in D — {2,}. Then clearly {2,} is an f-companion sequence for
{2:}. That z;=2¢ for no 4, and that 3;—2, are consequences of the
fact that for no s in D— {2} is f(2) =f(20).

We are now ready for the main theorem,
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TueoreM C. If f'(2) exists for all 2 in E, then f' is continuous in E.

ProoF. Suppose that f’ is not continuous at 2o E. We shall assume
(without loss of generality) that f/(z,) =0. (Otherwise, replace f(z)
by g(z) =£(2) — [f’(20) ]2 and note that g’ (2) =f'(z) —f’(20) is continuous
if and only if f/(2) is.) The assumption that f’ is not continuous at 2,
implies that there exist an ¢>0 and a sequence {zi} in E converging
to zo such that |f/(z;)| Z¢, for all 5. By Lemma 2, there exists for
{z; an f-companion sequence {%;{ in E converging to zo.

For each ¢ and for 2EE, define

f-———'——(Z) _ f(zi) ) if 2 # 2
Ni(2) = z — %
f'(z5), if 2 = 2.

Let {E,} be a sequence of open 2-cell neighborhoods of 2, each con-
tained in E and such that diam E;—0, as t— ». We may assume that
each E; contains both z; and %, since this can be arranged by taking
subsequences. Now on E;, N,(2) is continuous and, if I is the positive
integer such that, for 2> 1, %;52; but f(z:;) =f(z:), then, for all 1>1,
the connected set N;(E;) contains both zero and a point whose mod-
ulus is greater than or equal to e. Hence, for 2> 1, E; contains a point
g7 such that 2} =2, and N(z¥) =¢; where | #;| =¢/2. Also, the sequence
{z}¥; i>1} converges to 2.

Suppose that {t;; 1>17 } is an infinite sequence. Then, since all
t; belong to the compact set |z| =¢/2, there exists a limit point ¢ such
that | t| =€/2 and (again by taking subsequences back down the line)
we may suppose that ¢;,—¢. Let g(z) =f(2) —tz. Then g'(20) = —¢0, so
g is a local homeomorphism at 2,. Suppose D, with boundary C, isan
open circular neighborhood of zy, centered at 2, with D\UCCE, and
such that g is a homeomorphism on D\UC. Let F(z)=g(2) —g(z0),
Fi(2) =g(2) —g(z:), and Gi(2) =({—t;)(z—=2;). Let & denote the mini-
mum of {| F(z)| : 2€C}. Since 0 F(C), we have §>0. Since F; con-
verges uniformly to F on C, there exists a positive integer I such that
i>1, implies that the minimum of { ‘ F,-(z)| :3€C} >28/3. Since
ti—t and z;—2,, there exists an I, such that, for all 2> 1, and for all
2EC, IGi(z)I <48/3. Finally, there is an I; such that, for all ¢> I,
both z; and zf belong to D.

Fix ¢ at a value greater than I4I;+I,+1I;. Then |G,'(z)| is less
than | F. i(2)| for all 2&C. By Rouché’s theorem, Fi(2)+Gi(z) has
exactly the same number of zeros in D as F;(z), which has only one
since g is a homeomorphism on D. But
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Fi(z) + Gi(2) = g(z) — g(2:) + (¢ — t:)(z — 2)
= [g(a) + (¢ — t)z] — [g(z) + (¢ — t:)z]
= [f(&) = ts] — [f(z:) — tiz]
= f(2) — f(z:) — ti(z — %)
[Ni(2) — t:](z — 29,
which has a zero when z=2; and also when z=2z}. This contradiction
proves the theorem in case {t,-; 1>T } is an infinite sequence.

In case {t;; i>1I} is finite, we obtain an even more immediate
contradiction.
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