ON OPEN MAPPINGS IN BANACH ALGEBRAS, II

BY CHARLES A. MCCARTHY¹

Communicated by Einar Hille, October 10, 1958

This paper contains an elementary way to look at the results of [1] and [2]. We prove Theorems 4 and 5 of [2].

Let \mathfrak{A} be a Banach algebra, f a holomorphic function on an open set U in the plane, $a \in \mathfrak{A}$, $\sigma(a) \subset U$, and $f(\sigma(a)) \subset f(V)$ where V is an open set on which f is 1-1. Then a neighborhood of f(a) consists entirely of points of the form f(b) for some $b \in \mathfrak{A}$; further, if $\sigma(a_1) \subset V$ and $f(a) = f(a_1)$, then a and a_1 commute.

To prove this, let \tilde{f} be the restriction of f to V, \tilde{f}^{\vee} the inverse function to \tilde{f} . \tilde{f}^{\vee} is defined on an open set W of the plane, with $f(\sigma(a)) \subset W$. There exists a neighborhood of f(a) all of whose elements have spectrum contained in W (see e.g., [2, Lemma 2]). For these elements c, set $b = \tilde{f}^{\vee}(c)$. Then $f(b) = \tilde{f}(b) = \tilde{f}(\tilde{f}^{\vee}(c)) = c$.

The second assertion comes from noticing that a commutes with g(a) for any g holomorphic on U; in particular, with $\tilde{f}^{\vee}(f(a)) = \tilde{f}^{\vee}(f(a_1)) = a_1$.

BIBLIOGRAPHY

1. E. Hille, On roots and logarithms of elements of a complex Banach algebra, Math. Ann. vol. 136 (1958) pp. 46-57.

2. C. McCarthy, On open mappings in Banach algebras, to appear in the Journal of Mathematics and Mechanics.

YALE UNIVERSITY

¹ The author is a National Science Foundation Fellow.