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If G is a transformation group on a space X, then x(~X is a station
ary point if gx = x for every g £ G . It has been an open problem, pro
posed by Smith [5] and by Montgomery [l, Problem 39], to deter
mine whether every compact Lie group acting on a cell or on Euclid
ean space has a stationary point. Smith [4; 5] has shown the answer 
to be in the affirmative in case G is a toral group or a finite group of 
prime power order. In this note we give a simplicial action of A^ the 
group of even permutations on five letters, on an n-cell without sta
tionary points. Greever [3] has recently shown that the only finite 
groups of order less than 60 which could possibly act simplicially 
on a cell without stationary points are a certain class of groups of 
order 36. 

We wish to thank P. E. Conner for his help and encouragement. 

1. The coset space SO(3)/I. Let SO(3) denote the group of all 
proper rotations of Euclidean 3-space Ez and let IQSO(3) be the 
group of rotational symmetries of the icosahedron. As a group, / is 
isomorphic to A5 (see [9, pp. 16-18]) and hence is simple. 

LEMMA 1. The coset space 5 0 ( 3 ) / / has the integral homology groups 
of the 3-sphere Sz. 

PROOF. Let Q denote the algebra of quaternions and QiQQ the 
group of quaternions of norm one. Identify Q with I?4 and Qi with Sz. 
Let r : Qi—>50(3) be the standard homomorphism, which is a two-to-
one covering map. Set 7 / = T ~ * 1 ( J ) . Then r induces a homeomorphism 
Ql/F~SO(3)/I. 

The natural map w: Qi—*Qi/F is a covering map and the group of 
covering translations is given by the action of F on Q> by right 
multiplication. Since every covering translation preserves orientation 
it follows that Qi/F is an orientable 3-manifold and hence Hz(Q\/F) 
ttHz(SO(3)/I)e*Z (here Z denotes the integers). 

From covering space theory the fundamental group wi(Qi/F) is 
isomorphic to I ' . Thus Hi(Qi/F) is isomorphic to F/[F, F] where 
[F, / ' ] denotes the commutator subgroup of I ' . Since J is simple, 
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[/, I ] = 7 . Also r maps [/', / ' ] onto [/, / ] ; it follows that either 
[/', ƒ ' ] = ƒ ' or [/', r] « / . But Qi contains only one element of order 
two. Since I contains fifteen elements of order two, [/', I'] is not iso
morphic to I. Thus I' = [/', r] and Hi(Qi/I') = 0. By Poincare duality 
it follows that H2(Qi/r)=0. The lemma follows. 

2. Action of I on 5 0 ( 3 ) / / . Let 7 act on S0(3)/I by £ r ( g / ) =gigl. 
A point g = gl of 5 0 ( 3 ) / / is fixed under this action if and only if g 
belongs to the normalizer of I in 50(3). But I is a maximal finite sub
group of 50(3) (see [9, pp. 16-18]); furthermore, I is not included in 
any nonfinite proper closed subgroup of 50(3), since this is not the 
case for the only two classes of such subgroups. Since I is not normal, 
it follows that I is its own normalizer. Hence there is exactly one sta
tionary point of this action, and this is è. 

We say that the transformation group G acts simplicially on the 
space X if there exists a triangulation of X with respect to which the 
homeomorphism g: X—+X is simplicial for every g GO. 

LEMMA 2. The action of I on 5 0 ( 3 ) / / is simplicial. 

PROOF. Let I'XI' act on Ç( = E4) by the rule (qu g2)-2 = gri<Zff5"1. 
This represents I'XI' as a finite group of orthogonal transformations 
of JE4. Hence we may find a triangulation of Sz( = Qi) such that the 
action of I'XI' is simplicial. The method is similar to one used by 
Whitney [8, p. 358, Lemma 3b] ; we omit the details. 

Now eXl' acts simplicially on Qi, and the orbit space is Qi/I'. 
By taking a barycentric subdivision, the triangulation of Q\ induces 
a triangulation of the orbit space Qi/I'. The action of I'Xe on Qi 
induces an action of I'Xe on Qi/I' and since VXe acts simplicially 
on Qi the induced action is simplicial with respect to the induced tri
angulation of Qi//7 . 

In the action of I'Xe( = I') on Q\/I' the effective group is / ' /kernel r . 
Furthermore the homeomorphism T\ of Q\/I' on 5 0 ( 3 ) / / is equi-
variant with respect to the action of / ' /kernel r on Qi/V and the 
action of / on S0(3)/I. I t follows that the action of / on 50(3) is 
simplicial. 

3. Action of / on a cell. We may assume that the triangulation of 
Qi is C1 in the sense of [6] and that e is a vertex. Since 

n-ic:Ql-+S0(3)/I 

is a C^-map the induced triangulation of 5 0 ( 3 ) / / is a C1 triangula
tion. I t follows that the closed star of the point / of 5 0 ( 3 ) / / is a 3-cell 
(see [6, p. 818, Theorem 5]). Let K denote the complex resulting if 
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we remove the open star of the point / from 50(3) / J , and let \K\ 
denote the corresponding space. Then | JSTJ is acyclic (i.e. Hi(\ K\ ) = 0 
for i > 0 , and HO(\K\)^Z), and / acts simplicially on |JK"| without 
stationary points. 

Consider now the join L = K o I of the complex K and the complex 
I , where I is the complex consisting of 60 vertices (the points of I) 
and no simplices of higher dimension. Since I acts on K> and / acts 
on I (by left multiplication), then I acts simplicially on L. In fact, 
g(E ƒ maps a line segment from x £ i £ to fe£ J linearly into the line 
segment from g(x) to gh. Furthermore, there are no stationary points 
on L. The polyhedron \L\ is a union of 60 cones over \K\, each pair 
intersecting in \K\. I t follows that \L\ is acyclic, and also simply 
connected. 

Let (vi, - • • , vn) denote the set of vertices of L. Each g £ JT induces 
a permutation rjg of the vertices of L ; rjg may be considered as an ele
ment of the full symmetric group Sn on n letters. 

Let 0i, • • • , en be basis vectors for En. Each element n of Sn de
termines a permutation of (ei, • • • , e„). If we extend linearly, n 
defines a linear transformation of En. This defines an action of Sn as a 
group of linear transformations of En. 

Triangulate En so that the action of Sn is simplicial, and so that the 
simplex spanned by ei, • • • , en is a simplex of the triangulation. De
fine an embedding ƒ of L in En by setting f(vt) =6* and extending ƒ 
linearly to each simplex. Then ƒ is equivariant. Hence I acts on ƒ(!#), 
and without stationary points. 

Let Fi be the set of points of En which are stationary under the 
action of I. Then FiC\f(L) = 0. If we take sufficiently fine barycentric 
subdivisions we may assume that Fi does not intersect the first closed 
regular neighborhood of f(L) (see [2, pp. 70-72 for definitions]), 
denoted by N(J(L)). Since / acts simplicially on En and f(L) is 
invariant, it follows that N(J(L)) is also invariant. Since f(L) is 
simply connected and acyclic, it follows from a theorem of J. H. C. 
Whitehead [7, Corollary 3, p. 298] that the regular neighborhood is a 
combinatorial n-cell. Thus I acts simplicially on the combinatorial 
w-cell N(f(L)) without stationary points. 
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