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The classical spectral multiplicity theory for a single normal oper­
ator on Hubert space generalizes the unitary determination of a 
normal matrix by the multiplicities of its eigenvalues. We outline 
here the beginnings of an analogous equivalence theory patterned 
after the similarity determination of an arbitrary (complex) matrix 
by the Jordan canonical form, or the numerical invariants, the Weyr 
and Segre characteristics. Generalizations of these characteristics are 
defined, in spatial rather than combinatorial terms, in the Banach 
space context, but for application to single operators both abstract 
structural knowledge of the operators and a multiplicity theory of the 
classical kind are required ; hence our equivalence conclusions are re­
stricted to a class of spectral operators on Hubert space. Here, the 
generalized Weyr characteristic provides a complete set of invariants 
for an equivalence relation slightly more general than similarity. No 
separability assumptions are required. 

We assume various parts of spectral operator (and related) theory 
outlined in §2 of Dunford's review article [2], including the multi­
plicity theory of Bade (cf. pp. 235-236 of [2]) for a complete Boolean 
algebra of projections on a Banach space, and also, the multiplicity 
theory in toto of Halmos [4] for a single normal operator on Hubert 
space. 

1. Let 36 be a Banach space of uniform multiplicity n<°o with 
respect to the complete countably-additive spectral measure EC-), 
defined on the Borel sets 93 of the complex plane G, with support 
AG93. (That is, if for x£36, m(x) denotes elm [E(8)* |8G»] f then, 
whenever E ( S ) ^ 0 , the space £(5)36 = Vj^i 501 (*»•) and n vectors are 
always required.) If ƒ is a Borel function on (3 we write S(J) for the 
not-necessarily-bounded operator ff(\)E(dk), and call a set S G 93 an 
inverting set for S(J) if E(S)S(l/f) is bounded. Let 

C(x) = A{E(8)|E(8)* = s, 8G93} 

•—C(x) is always some E(S)—and call two sets S, 7rGS equivalent 
1 This paper summarizes the author's doctoral dissertation at Yale University, 
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(ô=ir) if E(ô) ==E(7T), and a set 5Ç33 negligible if 8 = 0 , the null set. 
We note that Bade has shown that 

2R(*) == {S(f)x\ x G domain £(ƒ)}, 

and, if £ = V?.! 2»(*i), then 

for each j and every #G3Ê can be written x — l im^» X X 1 E(wk)S(fi)x^ 
where wk={\\\fi(K)\ gk, i = l, 2, • • • , n } , * = 1, 2, • • • . 

A finite family of vectors { î, • • • , ym} C36 will be called independ­
ent if there is a family {zi, • • • , zm) C3Ê satisfying (a) SD?(:y»)C9K0st), 
each i; (b) C(zi)~I1 each i; and (c) X)»5(/»)£» = 0 implies each 
S(fi)Zi = 0, for every family {/i, • • • , fm) of Borel functions with 
z% G domain S(fi). Then the standard elementary arguments for 
finite-dimensional vector spaces can be modified, using inverting sets 
whenever the invertibility of a scalar is required, to prove the follow­
ing theorem. 

THEOREM 1. The maximum cardinality of an independent family of 
vectors in X is n. 

If * = VJU$»K*i) then { Xif , Xn } is independent. An obvious 
decomposition of A can be used to prove Theorem 2. 

THEOREM 2. The family \yi, • • • , ym} CX is independent if 
A* C(yi) ?*0 and ]T)» 5(/i-)y» = 0 implies each S(fi)yi = 0for every family 
of Borel functions {/i, • • • , / m } w/& ;y;Gdomain 5(/*). 

Now let Q be a fixed quasi-nilpotent operator commuting with E. 
We desire to prove the nonzero orbit of every xG36 under Ç, 
{x, Q%* Q2xf ' • • }, is independent. The next theorem follows directly 
from the commutativity. 

THEOREM 3. For every xEX, C(Qkx)^C(Qk+1x)t jfe = 0, 1, 2, • • • . 

THEOREM 4. /ƒ Qx=*S(J)x, then Qx = 0. 

Only for this theorem is the quasi-nilpotency required, and this can 
be weakened. We sketch a proof. Assume Qx = S(f)x?*0. Then there 
is a set SGS3 such that |/(X)| > e > 0 for XGS, and £ ( S ) x ^ 0 . I t is 
clear that Qkx = S(fk)x. Then, in Hilbert space, 

I C I2 

I Qk\*\ E(ô)x\* è I QkE(ô)x\2 = I fk(\)E(dX)x\ > e2k\ E(8)x\\ 

contradicting the quasi-nilpotency of Q. The proof in Banach space is 
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similar, using a polar decomposition of ƒ and a Bade functional (cf. 
Theorem 3.1 of [l]) in place of the inner product. 

THEOREM 5. If Q^xÇ^domain S(fi) and XXo 5(/ l)Q ix = 0, then each 
S(/,)Q** = 0. 

If not, we can suppose, using inverting sets, that S(fm) = 7, Q m x^0, 
and each S(fi) is bounded. Let H<U [*~"g*(^)]i where each gi is a 
bounded Borel function, be a factorization of the polynomial 
HtofiWt\fmÇK) = 1 (cf.Lemma3.lof [3]) .Letsx= I R a [QS(gi)]x. 
Then (Q - S(gi))z! = 0, so Qzx = Ü Ï U [Q - S(gt)]Qx = 0. Let z2 

-Jltz [QS(gi)]Qx; similarly Qs2 = I R - . [Q-S(^)]<22*==0. Repe-
tition shows Qmx = 0. 

COROLLARY. If XÇZ& then the nonzero orbit of x under Q is independ­
ent. Thus QnX = 0. 

If 0 ^ 8 G 9 3 , we call a (finite) family of vectors {xa |û:G^.} a ftth 
ifléfex; system over S if (a) Qfcxa = 0, « G i ; (b) C^Q*-1**) è £ ( 8 ) , a £ 4 ; 
and (c) the family {Ö*xö|a:G^4, i = 0, 1, • • • , ft —l} is independent. 

THEOREM 6. If $^8G$8 , tffo cardinality of a maximal kth index sys­
tem over 8 is unique. 

Let W(S, ft) be this cardinality (and be zero when 8 = 0 ) . Then 
*W(8, ft) Sn for each ft, and W(5, ft) = 0 for ft>w. 

THEOREM 7. (a) For e^r^ 8G33, *W(8, ft)èW(5, ft + 1) /or *wft 
4 = 1,2, 

(b) 7/ TTGSS, 0 ^ ? r C 8 , /ten WOr, ft)=W(5, ft) /or each ft. 
(c) 7/ 8 is the disjoint union of a countable family {8*} C33 of non-

negligible sets, then W(5, ft) = mint- {^(8;, k)} for each ft. 

Let S(S, ft) = <W(8, ft) - <W(8, ft + 1). Then 2 X i *S(8, ft) 
= X ^ - i ^ ( 8 , ft), and °W and S are the Weyr and Segre characteristics 
in the finite dimensional case when 8= {\} is an eigenvalue. Theorem 
7 shows W(- , ft) to be a multiplicity function in the sense of Halmos 
for each ft. Call a set 8£:$5 k-uniform if 0 ^ 7 r C 8 implies W^r, ft) 
= CW(8, ft), and of uniform characteristic if it is ft-uniform for every ft. 
I t then follows from the arguments of [4] that A can be partitioned 
into sets of uniform characteristic. 

THEOREM 8. For each 8 G $ , X X i *W(5, ft) = w . 

Our chief result in the Banach space context is Theorem 9, required 
for the equivalence theory of the next section. 
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THEOREM 9. A non-negligible set Ö£93 has uniform characteristic if 
and only if X X 1 W(8, k) = n. 

The obvious correspondence between equivalence classes of Borel 
subsets of A and equivalence classes (absolute continuity) of regular, 
totally-finite, countably-additive, non-negative set functions 
( = measures) with support in À permits us to consider °W defined for 
measure, rather than set, arguments. 

2. Abandon the assumption of uniform multiplicity and take the 
underlying vector space to be an arbitrary Hubert space § . Let N 
be a (bounded) normal operator on p̂ with resolution of the identity 
E and multiplicity function u, from measures to cardinals, character­
izing N to within unitary equivalence. We recall there is a mapping 
ix—>C(/x) of measures to self-adjoint projections in the second com­
mutator ( = weak or strong algebraic closure 3 completion) of E, and 
a (nonunique) orthogonal family of measures {jua|ce£-4 } of uniform 
multiplicity with V« C(fxa)=I. Each subspace C(/*a)§ is a space of 
uniform multiplicity u(iia) with respect to the countably decom­
posable (hence complete) spectral measure C(fxa)E(-). We call N 
essentially finite if u(ix) is always finite. If Q is a quasi-nilpotent com­
muting with N then Q is completely reduced by each C(/xa)§, and, 
if N is essentially finite, the results of §1 permit us to define %¥*(/*, k) 
for a measure [x satisfying M^Mao f° r some aoÇ.A. Then, for any 
measure JU, let W(/x, &)=min a {v?(nAp<x, & ) | M A M « ^ 0 } . This defini­
tion is independent of the particular family {jua}—thus *W depends 
only on the pair (N, Q)—and the significant results of §1 (Theorems 
7, 8, 9) mutatis mutandis follow readily. 

THEOREM 10. If Si and S2 are scalar operators on § with respective 
resolutions of the identity E\ and E2 and L is a nonsingular operator 
(i.e., bounded and with bounded, everywhere defined inverse) on § such 
that 5,2 = L5iL~1, then E2(-) =LEi(-)L~1 . If Si and S2 are normal as 
well, then they are unitarily equivalent. 

Every scalar operator 5 on § has a normal conjugate, LSL"1, L 
nonsingular. Call 5 essentially finite if one (and, by Theorem 10, 
every) normal conjugate is essentially finite, and the spectral operator 
T = S+Q (in canonical decomposition) essentially finite when 5 is. 

THEOREM 11. Let Ti = Ni+Qi and r 2 = iV2+()2 be similar (i.e., T2 

— LTiL~l, L nonsingular) spectral operators on § in canonical de­
composition with normal scalar parts. If Ti is essentially finite, so is 
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T2, and the Weyr characteristics defined by (N\, Qi) and (N2, Q%) are the 
same. 

Thus if T = S+Q is an essentially finite spectral operator we can 
unambiguously define its Weyr characteristic as that of any pair 
(LSL*1, LQIr1), LSL~~l normal, and it is a similarity invariant. Un­
fortunately, simple infinite matrix examples will show it is not a 
complete set of similarity invariants, and some form of unbounded 
similarity that will generate an equivalence relation is required. We 
call two spectral operators T\ and T2 semi-similar if there is, for 
i = l, 2, a family of projections {P^a^A} QEi (the completion of 
the resolution of the identity £»• of Ti) with V«€4 P* = / , such that, for 
each « G i , there is a nonsingular operator La from Pl

a$£ onto P « § 
with r 2 Pa = L ar iL~ 1P«. (As P«GS t-, the operator Ti and its scalar 
and quasi-nilpotent parts are completely reduced by each Pl£>, and 
T\Pot = La TvJLaPa*) 

Semi-similarity is an equivalence relation for spectral operators, 
semi-similar normal operators are unitarily equivalent, and the spec­
trum is a semi-similarity invariant. If Pi and P2 are semi-similar 
spectral operators and T\ is essentially finite, then T2 is essentially 
finite. The Weyr characteristic is a complete set of semi-similarity 
invariants for essentially finite spectral operators on § . That is, 

THEOREM 12. Two essentially finite spectral operators on § are semi-
similar if and only if they have the same Weyr characteristic. 
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