# SOME PROPOSITIONS EQUIVALENT TO THE CONTINUUM HYPOTHESIS 

BY FREDERICK BAGEMIHL<br>Communicated by Deane Montgomery, December 11, 1958

Let $\mathcal{E}$ denote the real line. If $T \subset \mathcal{E}$ and $r \in \mathcal{E}$, we set $\{t+r: t \in T\}$ $=T[r]$. In [1] we have proved these two theorems:
( $\mathrm{B}_{\mathrm{K}}$ ) Let $S \subset \mathcal{E}, T \subset \mathcal{E}, S$ be at most enumerable and $T$ be of first category. Then $\mathcal{E}$ contains a residual subset $R$ such that $S \cap T[r]$ is empty for every $r \in R$.
$\left(\mathrm{B}_{\mathrm{M}}\right)$ Let $S \subset \mathcal{E}, T \subset \mathcal{E}, S$ be at most enumerable and $T$ be of measure zero. Then $\mathcal{E}$ contains a subset $R$ such that $\mathcal{E}-R$ is of measure zero and $S \cap T[r]$ is empty for every $r \in R$.

We introduce the following propositions:
$\left(\mathfrak{B}_{\mathrm{K}}\right)$ Let $S \subset \mathcal{E}, T \subset \mathcal{E}, S$ be of power less than $2^{\mathcal{N}_{0}}$ and $T$ be of first category. Then $\mathcal{E}$ contains a residual subset $R$ such that $S \cap T[r]$ is empty for every $r \in R$.
$\left(\mathfrak{B}_{\mathrm{M}}\right)$ Let $S \subset \mathcal{E}, T \subset \mathcal{E}, S$ be of power less than $2^{\mathfrak{N}_{0}}$ and $T$ be of measure zero. Then $\mathcal{E}$ contains a subset $R$ such that $\mathcal{E}-R$ is of measure zero and $S \cap T[r]$ is empty for every $r \in R$.
$\left(\mathfrak{B}_{K}^{*}\right)$ Let $S \subset \mathcal{E}, T \subset \mathcal{E}, S$ be of power less than $2^{N_{0}}$ and $T$ be of first category. Then there exists an $r \in \mathcal{E}$ such that $S \cap T[r]$ is empty.
$\left(\mathfrak{B}_{M}^{*}\right)$ Let $S \subset \varepsilon, T \subset \varepsilon, S$ be of power less than $2^{\aleph_{0}}$ and $T$ be of measure zero. Then there exists an $r \in \mathcal{E}$ such that $S \cap T[r]$ is empty.

Clearly ( $\mathfrak{B}_{\mathrm{K}}$ ) implies ( $\mathfrak{B}_{\mathrm{K}}^{*}$ ) and ( $\mathfrak{B}_{\mathrm{M}}$ ) implies ( $\mathfrak{B}_{M}^{*}$ ).
The following five propositions are discussed at some length in [2]:
(H) $2^{\boldsymbol{N}_{0}}=\boldsymbol{\aleph}_{1}$.
(®) The union of less than $2^{\mathbb{N}_{0}}$ subsets of $\&$ of first category is of first category.
$(\mathfrak{M})$ The union of less than $2^{\mathcal{N}_{0}}$ subsets of $\varepsilon$ of measure zero is of measure zero.
$\left(\Omega^{*}\right) \varepsilon$ is not the union of less than $2^{\aleph_{0}}$ subsets of $\&$ of first category.
( $\mathfrak{M}^{*}$ ) $\varepsilon$ is not the union of less than $2^{\mathbb{N}_{0}}$ subsets of $\varepsilon$ of measure zero.
Evidently (H) implies ( $\Re$ ) and ( $\mathfrak{M}$ ), ( $\Omega$ ) implies ( $\Omega^{*}$ ), and ( $\mathfrak{M}$ ) implies ( $\mathfrak{M}^{*}$ ).

By examining the proofs of $\left(\mathrm{B}_{\mathrm{K}}\right)$ and $\left(\mathrm{B}_{\mathrm{M}}\right)$, it is easy to see that the following lemma is true.

Lemma 1. ( $\mathfrak{\Omega}$ ) implies $\left(\mathfrak{B}_{\mathrm{K}}\right)$, ( $\mathfrak{M}$ ) implies $\left(\mathfrak{B}_{\mathrm{M}}\right)$, $\left(\mathfrak{R}^{*}\right)$ implies $\left(\mathfrak{B}_{\mathrm{K}}^{*}\right)$, and $\left(\mathfrak{M}^{*}\right)$ implies $\left(\mathfrak{B}_{M}^{*}\right)$.

Now let $\mathcal{P}$ denote the plane provided with a Cartesian coordinate
system having a horizontal $x$-axis and a vertical $y$-axis. If $\Phi$ is a family of horizontal lines (in $\mathcal{P}$ ), we say that $\Phi$ is of first category (measure zero) if the union of the members of $\Phi$ intersects the $y$-axis in a linear set of first category (measure zero). If $r \in \mathcal{E}$, we denote by $\Phi[r]$ the family of horizontal lines obtained from $\Phi$ as follows: if $L$ is a member of $\Phi$ and intersects the $y$-axis at $y_{0}$, then the horizontal line that intersects the $y$-axis at $y_{0}+r$ is made a member of $\Phi[r]$. We call the families $\Phi[r](r \in \mathcal{E})$ the translations of $\Phi$.

We introduce also the following propositions:
$\left(\mathfrak{Q}_{\mathrm{K}}\right)$ There exists a subset $A$ of $\odot$ and a family $\Phi$ of horizontal lines such that
(i) $\Phi$ is of first category,
(ii) there is a subset $U$ of $\mathcal{E}$ of second category such that, for every $u \in U$, the family $\Phi[u]$ contains a horizontal line that intersects $A$ in at most $\boldsymbol{\aleph}_{0}$ points,
(iii) every member of some nonenumerable set of vertical lines intersects $\odot-A$ in at most $\boldsymbol{\aleph}_{0}$ points.
$\left(\mathfrak{\Omega}_{\mathrm{M}}\right)$ There exists a subset $A$ of $\mathcal{P}$ and a family $\Phi$ of horizontal lines such that
(i) $\Phi$ is of measure zero,
(ii) there is a subset $U$ of $\&$ of positive exterior measure such that, for every $u \in U$, the family $\Phi[u]$ contains a horizontal line that intersects $A$ in at most $\boldsymbol{\aleph}_{0}$ points,
(iii) every member of some nonenumerable set of vertical lines intersects $\mathcal{P}-A$ in at most $\boldsymbol{\aleph}_{0}$ points.
$\left(\mathfrak{Q}_{K}^{*}\right)$ There exists a subset $A$ of $\mathcal{P}$ and a family $\Phi$ of horizontal lines such that
(i) $\Phi$ is of first category,
(ii) every translation of $\Phi$ contains a horizontal line that intersects $A$ in at most $\aleph_{0}$ points,
(iii) every member of some nonenumerable set of vertical lines intersects $\mathcal{P}-A$ in at most $\boldsymbol{\aleph}_{0}$ points.
$\left(\mathfrak{Q}_{M}^{*}\right)$ There exists a subset $A$ of $\mathcal{P}$ and a family $\Phi$ of horizontal lines such that
(i) $\Phi$ is of measure zero,
(ii) every translation of $\Phi$ contains a horizontal line that intersects $A$ in at most $\boldsymbol{\aleph}_{0}$ points,
(iii) every member of some nonenumerable set of vertical lines intersects $\odot-A$ in at most $\boldsymbol{\aleph}_{0}$ points.
$\left(\mathfrak{Q}_{K}^{\prime}\right)$ There exists a subset $A$ of $\mathcal{P}$ and a family $\Phi$ of horizontal lines such that
(i) $\Phi$ is of power less than $2^{\aleph_{0}}$,
(ii) there is a subset $U$ of $\mathcal{E}$ of second category such that, for every $u \in U$, the family $\Phi[u]$ contains a horizontal line that intersects $A$ in at most $\boldsymbol{\aleph}_{0}$ points,
(iii) every member of some nonenumerable set of vertical lines intersects $\mathcal{P}-A$ in a linear set of first category.
$\left(\mathfrak{Q}_{M}^{\prime}\right)$ There exists a subset $A$ of $\mathcal{P}$ and a family $\Phi$ of horizontal lines such that
(i) $\Phi$ is of power less than $2^{\aleph_{0}}$,
(ii) there is a subset $U$ of $E$ of positive exterior measure such that, for every $u \in U$, the family $\Phi[u]$ contains a horizontal line that intersects $A$ in at most $\boldsymbol{\aleph}_{0}$ points,
(iii) every member of some nonenumerable set of vertical lines intersects $\mathcal{P}-A$ in a linear set of measure zero.

Obviously ( $\mathfrak{Q}_{K}^{*}$ ) implies ( $\mathfrak{Q}_{K}$ ) and ( $\mathfrak{\Omega}_{M}^{*}$ ) implies ( $\mathfrak{Q}_{M}$ ). We remark that Propositions ( $\mathfrak{B}$ ) and (W) in [2] imply $\left(\mathfrak{Q}_{K}^{\prime}\right)$ and $\left(\mathfrak{Q}_{M}^{\prime}\right)$, respectively.

Lemma 2. (H) implies ( $\mathfrak{Q}_{K}^{*}$ ), ( $\mathfrak{Q}_{M}^{*}$ ), ( $\mathfrak{Q}_{K}^{\prime}$ ), and ( $\mathfrak{Q}_{M}^{\prime}$ ).
Proof. Suppose that (H) is true. Then [3, p. 9, Proposition $P_{1}$ ] there exists a subset $A$ of $\rho$ such that the intersection of every horizontal line with $A$ is an at most enumerable set and the intersection of every vertical line with $\mathcal{P}-A$ is an at most enumerable set; if we let $\Phi$ consist of a single horizontal line, the truth of $\left(\mathfrak{Q}_{K}^{*}\right)$, $\left(\mathfrak{Q}_{M}^{*}\right),\left(\mathfrak{Q}_{K}^{\prime}\right)$, and $\left(\mathfrak{\Omega}_{M}^{\prime}\right)$ is apparent.

Theorem 1. The conjunction of $\left(\mathfrak{F}_{\mathrm{K}}\right)$ and $\left(\mathfrak{Q}_{\mathrm{K}}\right)$ is equivalent to $(\mathrm{H})$.
Proof. (a) Assume that (H) is true. Then Lemma 1 implies that $\left(\mathfrak{B}_{\mathrm{K}}\right)$ is true, and the truth of $\left(\mathfrak{Q}_{\mathrm{K}}\right)$ follows from Lemma 2.
(b) Assume that $\left(\mathfrak{B}_{K}\right)$ and $\left(\mathfrak{Q}_{K}\right)$ are true. If (H) is false, then, in view of (iii) of ( $\mathfrak{Q}_{\mathbb{K}}$ ), there exist $\mathfrak{p}$ vertical lines, with $\aleph_{0}<\mathfrak{p}<2^{\aleph_{0}}$, whose union intersects $\mathcal{P}-A$ in a set whose orthogonal projection, $S$, on the $y$-axis is of power less than $2^{N_{0}}$. If $T$ is the intersection of the $y$-axis with the union of the members of $\Phi$, then, by (i) of $\left(\mathfrak{Q}_{K}\right), T$ is a linear set of first category, and ( $\mathfrak{B}_{\mathrm{K}}$ ) implies that $\mathcal{E}$ contains a residual subset $R$ with the property that $S \cap T[r]$ is empty for every $r \in R$. This means that, for some $u \in U$, every member of $\Phi[u]$ intersects each of the aforementioned $\mathfrak{p}$ vertical lines in a point of $A$, which contradicts (ii) of ( $\mathfrak{Q}_{\mathrm{K}}$ ). Consequently, (H) is true.

Theorem 2. The conjunction of $\left(\mathfrak{B}_{\mathrm{M}}\right)$ and $\left(\mathfrak{Q}_{\mathrm{M}}\right)$ is equivalent to $(\mathrm{H})$.
Proof. In the proof of Theorem 1 , replace " $\left(\mathfrak{B}_{K}\right)$ " by " $\left(\mathfrak{B}_{M}\right)$ ",
" $\left(\mathfrak{Q}_{K}\right)$ " by " $\left(\mathfrak{Q}_{\mathbf{M}}\right)$ ", "first category" by "measure zero," and "residual subset $R$ " by "subset $R$ such that $\mathcal{E}-R$ is of measure zero."

Theorem 3. The conjunction of $\left(\mathfrak{B}_{K}^{*}\right)$ and $\left(\mathfrak{Q}_{K}^{*}\right)$ is equivalent to $(\mathrm{H})$.
Proof. (a) Assume that (H) is true. Then Lemma 1 implies that $\left(\mathfrak{B}_{K}^{*}\right)$ is true, and the truth of $\left(\mathfrak{Q}_{K}^{*}\right)$ follows from Lemma 2.
(b) Assume that $\left(\mathfrak{B}_{K}^{*}\right)$ and $\left(\mathfrak{Q}_{K}^{*}\right)$ are true. If (H) is false, then, in view of (iii) of ( $\mathfrak{Q}_{K}^{*}$ ), there exist $\mathfrak{p}$ vertical lines, with $\aleph_{0}<\mathfrak{p}<2^{\aleph_{0}}$, whose union intersects $\odot-A$ in a set whose orthogonal projection, $S$, on the $y$-axis is of power less than $2^{\aleph_{0}}$. If $T$ is the intersection of the $y$-axis with the union of the members of $\Phi$, then, by (i) of $\left(\mathfrak{Q}_{R}^{*}\right), T$ is a linear set of first category, and ( $\mathfrak{B}_{K}^{*}$ ) implies the existence of an $r \in \mathcal{E}$ such that $S \cap T[r]$ is empty. This means that every member of some translation of $\Phi$ intersects each of the aforementioned $\mathfrak{p}$ vertical lines in a point of $A$, which contradicts (ii) of $\left(\mathfrak{Q}_{K}^{*}\right)$. Consequently, $(\mathrm{H})$ is true.

Theorem 4. The conjunction of $\left(\mathfrak{B}_{M}^{*}\right)$ and $\left(\mathfrak{Q}_{M}^{*}\right)$ is equivalent to $(\mathrm{H})$.
Proof. In the proof of Theorem 3, replace " $\left(\mathfrak{B}_{K}^{*}\right)$ " by " $\left(\mathfrak{B}_{M}^{*}\right)$ ", " $\left(\mathfrak{\Omega}_{K}^{*}\right)$ " by " $\left(\mathfrak{\Omega}_{M}^{*}\right)$ ", and "first category" by "measure zero."

Theorem 5. The conjunction of ( $(\Omega)$ and $\left(\mathfrak{Q}_{K}^{\prime}\right)$ is equivalent to (H).
Proof. (a) Assume that (H) is true. Then, as we have remarked above, $(\Re)$ is true, and the truth of $\left(\mathfrak{\Omega}_{K}^{\prime}\right)$ follows from Lemma 2.
(b) Assume that ( $\Omega$ ) and ( $\mathfrak{Q}_{K}^{\prime}$ ) are true. If (H) is false, then, in view of (iii) of $\left(\mathfrak{\Omega}_{K}^{\prime}\right),(\Omega)$ implies that there exist $\mathfrak{p}$ vertical lines, with $\aleph_{0}<\mathfrak{p}<2^{\aleph_{0}}$, whose union intersects $\mathcal{P}-A$ in a set whose orthogonal projection, $T$, on the $y$-axis is a linear set of first category. If $S$ is the intersection of the $y$-axis with the union of the members of $\Phi$, then, by (i) of $\left(\mathfrak{Q}_{K}^{\prime}\right), S$ is of power less than $2^{\mathfrak{N}_{0}}$, and $\left(\mathfrak{B}_{K}\right)$, which follows from ( $\Omega$ ) according to Lemma 1, implies that $\mathcal{E}$ contains a residual subset $R$ with the property that $T \cap S[r]$ is empty for every $r \in R$. This means that, for some $u \in U$, every member of $\Phi[u]$ intersects each of the aforementioned $\mathfrak{p}$ vertical lines in a point of $A$, which contradicts (ii) of $\left(\mathfrak{\Omega}_{K}^{\prime}\right)$. Consequently, (H) is true.

Theorem 6. The conjunction of $(\mathfrak{M})$ and $\left(\mathfrak{\Omega}_{M}^{\prime}\right)$ is equivalent to $(\mathrm{H})$.
Proof. In the proof of Theorem 5, replace "( $\Omega)$ " by " $(\mathfrak{M})$ ", " $\left(\mathfrak{Q}_{K}^{\prime}\right)$ " by " $\left(\mathfrak{Q}_{M}^{\prime}\right)$ ", "first category" by "measure zero," " $\left(\mathfrak{F}_{\mathrm{K}}\right)$ " by " $\left(\mathfrak{B}_{\mathrm{M}}\right)$ ", and "residual subset $R$ " by "subset $R$ such that $\mathcal{E}-R$ is of measure zero."

## References

1. F. Bagemihl, A note on Scheeffer's theorem, Michigan Math. J. vol. 2 (19531954) pp. 149-150.
2. -, Some results connected with the continuum hypothesis, Z. Math. Logik Grundlagen Math. vol. 5 (1959).
3. W. Sierpiński, Hypothèse du continu, 2d ed., New York, 1956.

University of Notre Dame

