SOME PROPOSITIONS EQUIVALENT TO THE CONTINUUM HYPOTHESIS

BY FREDERICK BAGEMIHL

Communicated by Deane Montgomery, December 11, 1958

Let \mathcal{E} denote the real line. If $T \subset \mathcal{E}$ and $r \in \mathcal{E}$, we set $\{t+r: t \in T\}$ = T[r]. In [1] we have proved these two theorems:

(B_K) Let $S \subset \mathcal{E}$, $T \subset \mathcal{E}$, S be at most enumerable and T be of first category. Then \mathcal{E} contains a residual subset R such that $S \cap T[r]$ is empty for every $r \in R$.

(B_M) Let $S \subset \mathcal{E}$, $T \subset \mathcal{E}$, S be at most enumerable and T be of measure zero. Then \mathcal{E} contains a subset R such that $\mathcal{E} - R$ is of measure zero and $S \cap T[r]$ is empty for every $r \in R$.

We introduce the following propositions:

 $(\mathfrak{B}_{\mathbb{K}})$ Let $S \subset \mathfrak{E}$, $T \subset \mathfrak{E}$, S be of power less than 2^{\aleph_0} and T be of first category. Then \mathfrak{E} contains a residual subset R such that $S \cap T[r]$ is empty for every $r \in R$.

 (\mathfrak{B}_{M}) Let $S \subset \mathfrak{E}$, $T \subset \mathfrak{E}$, S be of power less than $2^{\aleph_{0}}$ and T be of measure zero. Then \mathfrak{E} contains a subset R such that $\mathfrak{E} - R$ is of measure zero and $S \cap T[r]$ is empty for every $r \in R$.

 (\mathfrak{B}_{K}^{*}) Let $S \subset \mathfrak{E}$, $T \subset \mathfrak{E}$, S be of power less than $2^{\aleph_{0}}$ and T be of first category. Then there exists an $r \in \mathfrak{E}$ such that $S \cap T[r]$ is empty.

 (\mathfrak{B}_{M}^{*}) Let $S \subset \mathfrak{E}$, $T \subset \mathfrak{E}$, S be of power less than $2^{\aleph_{0}}$ and T be of measure zero. Then there exists an $r \in \mathfrak{E}$ such that $S \cap T[r]$ is empty.

Clearly (\mathfrak{B}_{K}) implies (\mathfrak{B}_{K}^{*}) and (\mathfrak{B}_{M}) implies (\mathfrak{B}_{M}^{*}) .

The following five propositions are discussed at some length in [2]: (H) $2^{\aleph_0} = \aleph_1$.

(\Re) The union of less than 2^{\aleph_0} subsets of & of first category is of first category.

 (\mathfrak{M}) The union of less than 2^{\aleph_0} subsets of \mathfrak{E} of measure zero is of measure zero.

 (\Re^*) & is not the union of less than 2^{\aleph_0} subsets of & of first category.

(M*) & is not the union of less than 2^ℵ₀ subsets of & of measure zero.
Evidently (H) implies (𝔅) and (𝔅), (𝔅) implies (𝔅*), and (𝔅) implies (𝔅*).

By examining the proofs of (B_K) and (B_M) , it is easy to see that the following lemma is true.

LEMMA 1. (\Re) implies (\mathfrak{B}_{K}), (\mathfrak{M}) implies (\mathfrak{B}_{M}), (\Re^{*}) implies (\mathfrak{B}_{K}^{*}), and (\mathfrak{M}^{*}) implies (\mathfrak{B}_{M}^{*}).

Now let \mathcal{O} denote the plane provided with a Cartesian coordinate

system having a horizontal x-axis and a vertical y-axis. If Φ is a family of horizontal lines (in \mathcal{O}), we say that Φ is of first category (measure zero) if the union of the members of Φ intersects the y-axis in a linear set of first category (measure zero). If $r \in \mathcal{E}$, we denote by $\Phi[r]$ the family of horizontal lines obtained from Φ as follows: if L is a member of Φ and intersects the y-axis at y_0 , then the horizontal line that intersects the y-axis at y_0+r is made a member of $\Phi[r]$. We call the families $\Phi[r]$ ($r \in \mathcal{E}$) the translations of Φ .

We introduce also the following propositions:

 (\mathfrak{Q}_K) There exists a subset A of \mathfrak{G} and a family Φ of horizontal lines such that

(i) Φ is of first category,

(ii) there is a subset U of \mathcal{E} of second category such that, for every $u \in U$, the family $\Phi[u]$ contains a horizontal line that intersects A in at most \aleph_0 points,

(iii) every member of some nonenumerable set of vertical lines intersects $\mathcal{O} - A$ in at most \aleph_0 points.

 (\mathfrak{Q}_{M}) There exists a subset A of \mathfrak{P} and a family Φ of horizontal lines such that

(i) Φ is of measure zero,

(ii) there is a subset U of \mathcal{E} of positive exterior measure such that, for every $u \in U$, the family $\Phi[u]$ contains a horizontal line that intersects A in at most \aleph_0 points,

(iii) every member of some nonenumerable set of vertical lines intersects $\mathfrak{O} - A$ in at most \aleph_0 points.

 (\mathfrak{Q}_{K}^{*}) There exists a subset A of \mathfrak{G} and a family Φ of horizontal lines such that

(i) Φ is of first category,

(ii) every translation of Φ contains a horizontal line that intersects A in at most \aleph_0 points,

(iii) every member of some nonenumerable set of vertical lines intersects $\mathfrak{O} - A$ in at most \aleph_0 points.

 $(\mathfrak{Q}^*_{\mathbf{M}})$ There exists a subset A of \mathfrak{S} and a family Φ of horizontal lines such that

(i) Φ is of measure zero,

(ii) every translation of Φ contains a horizontal line that intersects A in at most \aleph_0 points,

(iii) every member of some nonenumerable set of vertical lines intersects $\mathfrak{O} - A$ in at most \aleph_0 points.

 (\mathfrak{Q}'_{K}) There exists a subset A of \mathfrak{G} and a family Φ of horizontal lines such that

(i) Φ is of power less than 2^{\aleph_0} ,

(ii) there is a subset U of \mathcal{E} of second category such that, for every $u \in U$, the family $\Phi[u]$ contains a horizontal line that intersects A in at most \aleph_0 points,

(iii) every member of some nonenumerable set of vertical lines intersects $\mathcal{O} - A$ in a linear set of first category.

 (\mathfrak{Q}'_{M}) There exists a subset A of \mathfrak{G} and a family Φ of horizontal lines such that

(i) Φ is of power less than 2^{\aleph_0} ,

(ii) there is a subset U of E of positive exterior measure such that, for every $u \in U$, the family $\Phi[u]$ contains a horizontal line that intersects A in at most \aleph_0 points,

(iii) every member of some nonenumerable set of vertical lines intersects $\mathcal{O} - A$ in a linear set of measure zero.

Obviously (\mathfrak{Q}_{K}^{*}) implies (\mathfrak{Q}_{K}) and (\mathfrak{Q}_{M}^{*}) implies (\mathfrak{Q}_{M}) . We remark that Propositions (\mathfrak{V}) and (\mathfrak{W}) in [2] imply (\mathfrak{Q}_{K}') and (\mathfrak{Q}_{M}') , respectively.

LEMMA 2. (H) implies (\mathfrak{Q}_{K}^{*}) , (\mathfrak{Q}_{M}^{*}) , $(\mathfrak{Q}_{K}^{\prime})$, and $(\mathfrak{Q}_{M}^{\prime})$.

PROOF. Suppose that (H) is true. Then $[3, p. 9, Proposition P_1]$ there exists a subset A of \mathcal{O} such that the intersection of every horizontal line with A is an at most enumerable set and the intersection of every vertical line with $\mathcal{O}-A$ is an at most enumerable set; if we let Φ consist of a single horizontal line, the truth of (\mathfrak{D}_K^*) , (\mathfrak{D}_M^*) , (\mathfrak{D}_K') , and (\mathfrak{D}_M') is apparent.

THEOREM 1. The conjunction of $(\mathfrak{B}_{\mathbb{K}})$ and $(\mathfrak{Q}_{\mathbb{K}})$ is equivalent to (H).

PROOF. (a) Assume that (H) is true. Then Lemma 1 implies that $(\mathfrak{B}_{\mathbf{K}})$ is true, and the truth of $(\mathfrak{O}_{\mathbf{K}})$ follows from Lemma 2.

(b) Assume that $(\mathfrak{B}_{\mathbb{K}})$ and $(\mathfrak{Q}_{\mathbb{K}})$ are true. If (H) is false, then, in view of (iii) of $(\mathfrak{Q}_{\mathbb{K}})$, there exist \mathfrak{p} vertical lines, with $\aleph_0 < \mathfrak{p} < 2^{\aleph_0}$, whose union intersects $\mathcal{O} - A$ in a set whose orthogonal projection, S, on the y-axis is of power less than 2^{\aleph_0} . If T is the intersection of the y-axis with the union of the members of Φ , then, by (i) of $(\mathfrak{Q}_{\mathbb{K}})$, T is a linear set of first category, and $(\mathfrak{B}_{\mathbb{K}})$ implies that \mathcal{E} contains a residual subset R with the property that $S \cap T[r]$ is empty for every $r \in R$. This means that, for some $u \in U$, every member of $\Phi[u]$ intersects each of the aforementioned \mathfrak{p} vertical lines in a point of A, which contradicts (ii) of $(\mathfrak{Q}_{\mathbb{K}})$. Consequently, (H) is true.

THEOREM 2. The conjunction of (\mathfrak{B}_M) and (\mathfrak{Q}_M) is equivalent to (H).

PROOF. In the proof of Theorem 1, replace " $(\mathfrak{B}_{\mathbf{K}})$ " by " $(\mathfrak{B}_{\mathbf{M}})$ ",

" $(\mathfrak{Q}_{\mathbf{K}})$ " by " $(\mathfrak{Q}_{\mathbf{M}})$ ", "first category" by "measure zero," and "residual subset R" by "subset R such that $\mathcal{E}-R$ is of measure zero."

THEOREM 3. The conjunction of (\mathfrak{B}_{K}^{*}) and (\mathfrak{Q}_{K}^{*}) is equivalent to (H).

PROOF. (a) Assume that (H) is true. Then Lemma 1 implies that (\mathfrak{B}_{K}^{*}) is true, and the truth of (\mathfrak{Q}_{K}^{*}) follows from Lemma 2.

(b) Assume that (\mathfrak{B}_{K}^{*}) and (\mathfrak{Q}_{K}^{*}) are true. If (H) is false, then, in view of (iii) of (\mathfrak{Q}_{K}^{*}) , there exist \mathfrak{p} vertical lines, with $\aleph_{0} < \mathfrak{p} < 2^{\aleph_{0}}$, whose union intersects $\mathcal{O} - A$ in a set whose orthogonal projection, S, on the y-axis is of power less than $2^{\aleph_{0}}$. If T is the intersection of the y-axis with the union of the members of Φ , then, by (i) of (\mathfrak{Q}_{K}^{*}) , T is a linear set of first category, and (\mathfrak{B}_{K}^{*}) implies the existence of an $r \in \mathfrak{S}$ such that $S \cap T[r]$ is empty. This means that every member of some translation of Φ intersects each of the aforementioned \mathfrak{p} vertical lines in a point of A, which contradicts (ii) of (\mathfrak{Q}_{K}^{*}) . Consequently, (H) is true.

THEOREM 4. The conjunction of (\mathfrak{B}_M^*) and (\mathfrak{Q}_M^*) is equivalent to (H).

PROOF. In the proof of Theorem 3, replace " (\mathfrak{B}_K^*) " by " (\mathfrak{B}_M^*) ", " (\mathfrak{D}_K^*) " by " (\mathfrak{D}_M^*) ", and "first category" by "measure zero."

THEOREM 5. The conjunction of (\Re) and (\mathfrak{Q}'_{K}) is equivalent to (H).

PROOF. (a) Assume that (H) is true. Then, as we have remarked above, (\Re) is true, and the truth of (\mathfrak{Q}'_{K}) follows from Lemma 2.

(b) Assume that (\mathfrak{R}) and (\mathfrak{Q}'_{K}) are true. If (H) is false, then, in view of (iii) of (\mathfrak{Q}'_{K}) , (\mathfrak{R}) implies that there exist \mathfrak{p} vertical lines, with $\mathfrak{R}_{0} < \mathfrak{p} < 2^{\mathfrak{R}_{0}}$, whose union intersects $\mathcal{O} - A$ in a set whose orthogonal projection, *T*, on the *y*-axis is a linear set of first category. If *S* is the intersection of the *y*-axis with the union of the members of Φ , then, by (i) of (\mathfrak{Q}'_{K}) , *S* is of power less than $2^{\mathfrak{R}_{0}}$, and (\mathfrak{B}_{K}) , which follows from (\mathfrak{R}) according to Lemma 1, implies that \mathfrak{E} contains a residual subset *R* with the property that $T \cap S[r]$ is empty for every $r \in R$. This means that, for some $u \in U$, every member of $\Phi[u]$ intersects each of the aforementioned \mathfrak{p} vertical lines in a point of *A*, which contradicts (ii) of (\mathfrak{Q}'_{K}) . Consequently, (H) is true.

THEOREM 6. The conjunction of (\mathfrak{M}) and $(\mathfrak{Q}'_{\mathbf{M}})$ is equivalent to (H).

PROOF. In the proof of Theorem 5, replace " (\mathfrak{R}) " by " (\mathfrak{M}) ", " (\mathfrak{O}'_{K}) " by " (\mathfrak{O}'_{M}) ", "first category" by "measure zero," " (\mathfrak{B}_{K}) " by " (\mathfrak{B}_{M}) ", and "residual subset R" by "subset R such that $\mathfrak{E}-R$ is of measure zero."

1959]

FREDERICK BAGEMIHL

References

1. F. Bagemihl, A note on Scheeffer's theorem, Michigan Math. J. vol. 2 (1953-1954) pp. 149-150.

2. ____, Some results connected with the continuum hypothesis, Z. Math. Logik Grundlagen Math. vol. 5 (1959).

3. W. Sierpiński, Hypothèse du continu, 2d ed., New York, 1956.

UNIVERSITY OF NOTRE DAME