SOLUTION OF THE EQUATION $z e^{z}=a$

BY E. M. WRIGHT

Communicated by Richard Bellman, December 15, 1958
The roots of the equation $z e^{z}=a(a \neq 0)$ play a role in the iteration of the exponential function $[2 ; 3 ; 11]$ and in the solution and application of certain difference-differential equations $[1 ; 9 ; 10 ; 12]$. For this reason, several authors $[4 ; 5 ; 7 ; 8 ; 9 ; 12]$ have found various properties of some or all of the roots. Here we "solve" the equation in the following sense. We list the roots Z_{n}, where n takes all integral values, and define Z_{n} precisely for each n. We give a rapidly convergent series for Z_{n} for all n such that $|n|>n_{0}(a)$; the first few terms provide a very good approximation to Z_{n}. In general, n_{0} is fairly small. Finally we show how to calculate each of the remaining $Z_{n}\left(-n_{0} \leqq n \leqq n_{0}\right)$ numerically by giving a variety of methods to find a first approximation to Z_{n} and showing how to improve this to any required degree of accuracy.

We cut the complex z-plane along the negative half of the real axis and take $|\arg z| \leqq \pi$ in the cut-plane. If we put $w=z+\log z$, we have $d w / d z=(z+1) / z$ and there is a branch-point at $z=-1$. The cuts in the z-plane are the two semi-infinite lines on which $w=u \pm \pi i, u \leqq-1$. It can be proved that there is a one-to-one correspondence between the points of the z-plane and those of the w-plane, excluding the cuts in each case, so that the function $z(w)$ is uniquely defined in the cut w-plane.

We write $A=|a|$, take $\log A$ real and $\log a=\log A+i \alpha$, where $-\pi<\alpha \leqq i \pi$. All the roots of our equation are given by Z_{n} $=z(\log a+2 n \pi i)$, where n takes all integral values. Z_{n} is thus precisely defined except when $\alpha=\pi$ and $\log A \leqq-1$, (i.e. when a is real and $-e^{-1} \leqq a<0$). In this one case, $\log a$ and $\log a-2 \pi i$ lie one on each of the two cuts in the w-plane; $z(\log a)$ has two real values, one less than -1 and one between -1 and 0 , while $z(\log a-2 \pi i)$ has the same two values. If $-e^{-1}<a<0$, we define Z_{-1} and Z_{0} to be these two real values, distinguishing them arbitrarily by $Z_{-1}<-1<Z_{0}<0$. If $a=-e^{-1}$, the equation (1) has a double root at $z=-1$ and we put $Z_{-1}=Z_{0}=-1$. In addition, when a is real and positive, Z_{0} is real. There are no other real roots for any a.

For every nonreal root Z_{n}, we write $Z_{n}=X_{n}+i Y_{n}$. It is easily proved that Y_{0} lies between 0 and α, that

$$
(2 n-1) \pi+\alpha<Y_{n}<2 n \pi+\alpha \quad(n \geqq 1)
$$

and that

$$
2 n \pi+\alpha<Y_{n}<(2 n+1) \pi+\alpha \quad(n \leqq-1)
$$

We define the sequence of polynomials $P_{m}(t)$ by

$$
P_{1}(t)=t, \quad P_{m+1}(t)=P_{m}(t)+m \int_{0}^{t} P_{m}(\sigma) d \sigma
$$

In particular,

$$
\begin{array}{ll}
P_{2}=t+\frac{1}{2} t^{2}, & P_{3}=t+\frac{3}{2} t^{2}+\frac{1}{3} t^{3} \\
P_{4}=t+3 t^{2}+\frac{11}{6} t^{3}+\frac{1}{4} t^{4}, & P_{5}=t+5 t^{2}+\frac{25}{6} t^{3}+\frac{25}{12} t^{4}+\frac{1}{5} t^{5}
\end{array}
$$

For every sufficiently large positive n, we write $H=2 n \pi+\alpha-\pi / 2$, $\beta=\log (A / H)$ and

$$
\begin{equation*}
\eta=\sum_{j=0}^{\infty}(-1)^{i} P_{2 j+1}(\beta) H^{-2 j-1} \tag{1}
\end{equation*}
$$

We can show then that

$$
Y_{n}=H+\eta, \quad X_{n}=(H+\eta) \tan \eta
$$

or, if we wish to calculate X_{n} only without first calculating η, we may use the series

$$
\begin{equation*}
X_{n}=\beta+\sum_{j=1}^{\infty}(-1)^{j} P_{2 j}(\beta) H^{-2 j} \tag{2}
\end{equation*}
$$

To obtain these expansions we take $i H$ as a first approximation to Z_{n} and note that $\beta=w\left(Z_{n}\right)-w(i H)$. Hence, by the Taylor's series for $z(w)$, we have

$$
\begin{equation*}
Z_{n}=i H+\sum_{m=1}^{\infty} \beta^{m}\left[d^{m} z / d w^{m}\right]_{z=i H} \tag{3}
\end{equation*}
$$

Some manipulation enables us to deduce (1) and (2). We can show that the series in (1) and (2) are convergent and the results valid if

$$
\begin{aligned}
& 2 H|\beta|<(H-1)^{2} \\
& (\log A)^{2}<\left(H-\frac{1}{2} \pi\right)^{2}+2(1+\log A) \log H+1
\end{aligned}
$$

are both satisfied, which they clearly are for large enough n.
To calculate η from a reasonable number of terms of (1), we must
have β / H fairly small. We observe that the series in (1) and (2) have real terms, a matter of importance for numerical calculation.

For n negative, we write $H=-2 n \pi-\pi / 2-\alpha>0, \beta=\log (A / H)$ and define η by (1). We have then

$$
Y_{n}=-H-\eta, \quad X_{n}=(H+\eta) \tan \eta
$$

and (2) is still true.
There will remain a few values of n for which the series (1) and (2) diverge or converge too slowly to provide a convenient means of calculating Z_{n}. For such an n, we have to calculate $z(w)$, where $w=\log A$ $+(2 n \pi+\alpha) i$. Now

$$
\begin{aligned}
& \frac{d w}{d z}=\frac{z+1}{z} \\
& \frac{d z}{d w}=\frac{z}{z+1}, \\
& \frac{d^{2} z}{d w^{2}}=\frac{d z}{d w} \frac{d}{d z}\left(\frac{z}{z+1}\right)=\frac{z}{(z+1)^{3}} .
\end{aligned}
$$

Hence, if $\delta z, \delta w$ denote corresponding small changes in z and w, we have

$$
\begin{equation*}
\delta z=z(z+1)^{-1} \delta w+O\left\{z(z+1)^{-3}(\delta w)^{2}\right\} . \tag{4}
\end{equation*}
$$

Thus, if we have a first approximation z_{0} to z, we calculate $w_{0}=w\left(z_{0}\right)$ and take $\delta w=w-w_{0}$. We then apply the correction $\delta z=z_{0}\left(z_{0}+1\right)^{-1} \delta w$ to z_{0} to obtain z_{1} (say). If we write $w=u+i v$ and $z=x+i y$, we may calculate $\lambda=\left\{\left(x_{0}+1\right)^{2}+y_{0}^{2}\right\}^{-1}$ and use the correction in the real form

$$
\begin{align*}
& \delta x=\left\{1-\lambda\left(x_{0}+1\right)\right\} \delta u-y_{0} \lambda \delta v, \tag{5}\\
& \delta y=y_{0} \lambda \delta u+\left\{1-\lambda\left(x_{0}+1\right)\right\} \delta v .
\end{align*}
$$

Next we calculate $w_{1}=w\left(z_{1}\right)$ and, if this still differs appreciably from w, we repeat the process. It is usually possible to use the same coefficients of $\delta u, \delta v$ in (5) at each step. Provided z_{0} is not near -1 , the process converges fairly rapidly by (4).

But z_{0} is near -1 if and only if w is near $-1 \pm \pi i$. Let us suppose, for example, that w lies near $-1+\pi i$, so that z must be near -1 . We can show that

$$
\begin{equation*}
z=-1+\sum_{m=1}^{\infty} c_{m} \omega^{m} \tag{6}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
c_{1}=-3 c_{2}=36 c_{3}=270 c_{4}=4320 c_{5}=-17010 c_{6}=1, \\
c_{7}=-\frac{139}{5443200}, \quad c_{8}=-\frac{1}{204120}, \quad c_{9}=-\frac{571}{2351462400}, \\
c_{m}=-c_{m-1}(m+1)^{-1}-\frac{1}{2} \sum_{h=2}^{m-1} c_{h} c_{m-h+1}
\end{array} \quad(m \geqq 3)\right)
$$

and $\omega=i 2^{1 / 2}(w+1-\pi i)^{1 / 2}$. If w lies on the lower edge of the cut in the w-plane ending at $-1+\pi i$, we take ω real and positive; if w does not lie on this cut, we take $\mathfrak{g}(\omega)>0$. The radius of convergence of the series in (6) is $2 \pi^{\frac{3}{2}}$. If w lies near $-1-\pi i$, the same series gives us $z(w)$, but $\omega=i 2^{1 / 2}(w+1+\pi i)^{1 / 2}$ and $\mathscr{G}(\omega)<0$, unless ω is real. Thus if (say) $\log a$ is near $-1+\pi i$, (6) enables us to calculate Z_{0} and Z_{-1}.

If w lies between the cuts, i.e. if $u<-1$, we have (see [6], for example)

$$
\begin{equation*}
z=\sum_{m=1}^{\infty}(-1)^{m-1} m^{m-1}(m!)^{-1} e^{m w} \tag{7}
\end{equation*}
$$

For $u \leqq-2$, the first few terms give the value of z with sufficient accuracy. This gives us Z_{0} when $|a| \leqq e^{-2}$.

Even if the series (1) does not converge sufficiently rapidly to be useful to calculate Z_{n}, the first one or two terms may provide a sufficient approximation to enable us to apply our correction procedure. (A similar remark applies to (7) and even to (6).)

If $|w|>4$ and w does not lie between the cuts in the w-plane, a useful value for z_{0} is $w-\log w$, where $\log w$ has its principal value. The next approximation z_{1} will be accurate to at least one decimal place and further approximations converge rapidly. For $|w| \leqq 4$, we have constructed a table of $w(z)$, which gives a satisfactory value of z_{0} by inspection, except near $z=-1$.

Alternatively drawing can be used to obtain the first approximation. Given u, v, we have to solve

$$
\begin{equation*}
x+\log r=u, \quad y+\theta=v \tag{8}
\end{equation*}
$$

where $r^{2}=x^{2}+y^{2}, \tan \theta=y / x$. To solve these equations graphically, we use (i) a sheet of paper, the (x, y) plane, carrying circles $r=k$ and radii $\theta=h$ for various values of k and h, and (ii) a sheet of tracing paper, the (X, Y) plane, on which the lines $X=-\log k$ and $Y=-h$ are drawn. We place the origin of the (X, Y) plane at the point (u, v) on the (x, y) plane, make the corresponding axes parallel and then plot on a second sheet of tracing paper (the second (x, y) plane) placed over the first the intersections of $X=-\log k$ with $r=k$ and that of
$Y=-h$ with $\theta=h$. Through these two sets of points can be drawn the two curves (8) and their intersection in the (x, y) plane gives the required solution.

References

1. R. Bellman, Ann. of Math. vol. 50 (1949) pp. 347-355.
2. G. Eisenstein, J. Reine Angew. Math. vol. 28 (1844) pp. 49-52.
3. L. Euler, Opera Omnia (i) vol. 15, Leipzig and Berne, 1927, pp. 268-297.
4. N. D. Hayes, J. London Math. Soc. vol. 25 (1950) pp. 226-232.
5. -_ Quart. J. Math. Oxford Ser. (2) vol. 3 (1952) pp. 81-90.
6. A. Hurwitz and R. Courant, Funktionentheorie, 3d ed., Berlin, 1929, pp. 141-142.
7. E. M. Lémeray, Nouv. Ann. de Math. (3) vol. 15 (1896) pp. 548-556 and vol. 16 (1896) pp. 54-61.
8. ——, Proc. Edinburgh Math. Soc. vol. 16 (1897) pp. 13-35.
9. O. Polossuchin, Thesis, Zurich, 1910.
10. F. Schürer, Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-phys. Kl. vol. 64 (1912) pp. 167-236 and vol. 65 (1913) pp. 239-246.
11. E. M. Wright, Quart. J. Math. Oxford Ser. (2) vol. 18 (1947) pp. 228-235.
12. -, J. Reine Angew. Math. vol. 194 (1955) pp. 66-87, esp. pp. 72-74.

University of Aberdeen, Scotland

