
ON r-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS 

KENKICHI IWASAWA1 

Let p be a prime number. We call a Galois extension L of a field K 
a T-extension when its Galois group is topologically isomorphic with 
the additive group of £-adic integers. The purpose of the present 
paper is to study arithmetic properties of such a T-extension L over 
a finite algebraic number field K. We consider, namely, the maximal 
unramified abelian ^-extension M over L and study the structure of 
the Galois group G(M/L) of the extension M/L. Using the result 
thus obtained for the group G(M/L)> we then define two invariants 
l(L/K) and m(L/K)} and show that these invariants can be also de­
termined from a simple formula which gives the exponents of the 
^-powers in the class numbers of the intermediate fields of K and L. 
Thus, giving a relation between the structure of the Galois group of 
M/L and the class numbers of the subfields of L, our result may be 
regarded, in a sense, as an analogue, for L, of the well-known theorem 
in classical class field theory which states that the class number of a 
finite algebraic number field is equal to the degree of the maximal 
unramified abelian extension over that field. 

An outline of the paper is as follows: in §1—§5, we study the struc­
ture of what we call T-finite modules and find, in particular, invari­
ants of such modules which are similar to the invariants of finite 
abelian groups. In §6, we give some definitions and simple results on 
certain extensions of (infinite) algebraic number fields, making it 
clear what we mean by, e.g., an unramified extension, when the 
ground field is an infinite algebraic number field. In the last §7, we 
first show that the Galois group G(M/L) as considered above is a 
T-finite module, then define the invariants l(L/K) and rn(L/K), and 
finally prove our main formula using the group-theoretical results 
obtained in previous sections. 

1. Preliminaries. 1.1. Let p be a prime number. We shall first 
recall some definitions and elementary properties of ^-primary abelian 
groups.2 
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A discrete group is called ^-primary if it is the direct limit of a 
family of finite ^-groups, or, what amounts to the same, if it is locally 
finite and if every element of the group has a finite order which is a 
power of p. A compact group is called ^-primary if it is the inverse 
limit of finite ^-groups. For a finite group, which is at the same time 
discrete and compact, both definitions coincide and the group is p-
primary if and only if it is a p-group. 

Now, let A be a ^-primary discrete abelian (additive) group. If the 
orders of elements in A have a fixed upper bound, i.e. if pnA = 0 for 
some n è 0, A is called a group of bounded order, or, simply, bounded. 
Let A' be the subgroup of elements a in A satisfying pa = 0. If A1 is a 
finite group of order pl, A is called a group of finite rank I. A is called 
divisible if pA=A. 

It is clear from the definition that the character group of a p-
primary discrete abelian group is a ^-primary compact abelian group 
and, conversely, the character group of a ^-primary compact abelian 
group is a ^-primary discrete abelian group. 

Let {At X] be such a dual pair of a ^-primary discrete abelian 
group A and a ^-primary compact abelian group X. Obviously, 
pnA = 0 if and only if pnX = 0. In such a case, the compact abelian 
group X is also called bounded. As the subgroup A' of A defined 
above is dual to X/pX, A is of finite rank I if and only if X/pX is a 
finite group of order ph If this is the case, the compact abelian group 
X is called a group of finite rank Z; for a finite abelian £-group, both 
definitions give the same rank I. Finally, A is divisible if and only if 
X is torsion-free. 

1.2. We shall next give a typical example of such a dual pair of a 
^-primary discrete abelian group and a ^-primary compact abelian 
group. 

For every integer w^O, let Zpn denote a cyclic group of order pn. 
Clearly, for each n^O, there exist an isomorphism </>n of Zpn into 
Zpn+i and a homomorphism ^n of ZPn+i onto Zpn. Let Zp<» be the direct 
limit of the sequence of cyclic groups Zpn relative to <f>n. Zp« is then a 
^-primary discrete abelian group and is isomorphic with the factor 
group Qp/Opy where Qp denotes the additive group of £-adic numbers 
and Op the subgroup of p-adic integers. On the other hand, the in­
verse limit of the groups Zpn relative to \f/n gives a ^-primary compact 
abelian group isomorphic with Op which is a compact group with 
respect to its natural £-adic topology. Since the finite groups Zpn are 
self-dual, it follows that Zp* and Op> or, QP/Op and Opi form a dual 
pair of ^-primary abelian groups. 

The duality between Qp/Op and Op can be seen also directly as 
follows. Qp is a locally compact abelian group in its p-adic topology 
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and there is a character x of Qp such that the kernel of the homo-
morphism a—»x(ö0 (#£(?*) is Op. The inner product on Qp defined by:8 

(a, b) = x(^ô), a,bE Qp, 

then gives a dual pairing of Qp with itself such that the annihilator of 
Op in Qp coincides with 0P itself. Hence, the pairing (a, b) induces a 
dual pairing of QP/Op and Op. 

1.3. Let G be a totally disconnected compact multiplicative group 
with the unity element 1. A topological additive abelian group U will 
be called a G-module when G acts on U so that 1 • w = w for every u in 
U and that the mapping aXu—xru of GX U into U is continuous. 

Let {̂ 4, X} be a dual pair as considered in 1.1 and suppose both 
A and X are G-modules in the sense defined above. We call A and X 
dual G-modules if there exists a dual pairing (a, x) of A and -X" such 
that 

(1) (era, ax) = (a, x) 

for every a in G, a in A, and x in X. 
Now, let (a, #) be any dual pairing of A and X. Suppose first that 

only A is given a structure of a G-module. We can then define, in a 
unique way, the product ax of a in G and # in X so that X becomes 
a G-module satisfying (1). Thus, if A is a G-module, the dual group 
X can be also made into a G-module so that A and X form a pair of 
dual G-modules with respect to a given pairing of A and X. The 
structure of the G-module X defined in this way depends upon the 
choice of the pairing (a, x)t but it is uniquely determined up to an 
automorphism of X. Similarly, if X is a G-module, we can define a 
structure of a G-module on the dual group A so that A and X form a 
pair of dual G-modules. 

1.4. Let G be a totally disconnected compact group and {A, X] 
a dual pair of a ^-primary discrete abelian group A and a ^-primary 
compact abelian group X. Defining aa = a, ax = x for any a in A> 
x in Xy and a in G, we may consider {A, X) as a pair of dual G-mod­
ules as defined above. Let Na be any open normal subgroup of G and 
Z(Ga) the group ring of the finite group Ga — G/Na over the ring of 
rational integers Z. We may consider Z(Ga) as a G-module by defining 

aw = a'w, a Çz G, w (E Z(Ga), 

where a' is the image of a under the canonical homomorphism 
G—*Ga. Let Hom(Z(G«), A) be the group of all homomorphisms of 
Z(Ga) into A. Since both Z(Ga) and A are G-modules, Hom(Z(Ga), A) 

8 ab is the product of a and 6 as elements of the field QP. 
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is also made into a G-module in a natural way.4 Furthermore, if Np 
is an open normal subgroup of G contained in Nat the canonical 
homomorphism Gp = G/Np--*G<x induces a natural G-isomorphism 
<l>p,aoî Hom(Z(G«), A) into Hom(Z(G/s), A). Hence, considering the 
set of all groups Horn (Z(G«), A) attached one for each open normal 
subgroup Na of G, we can form the direct limit ATi(G, A) of these 
discrete G-modules Horn(Z(G«), A) relative to the homomorphisms 
0/3,a. By the definition, Mi(G} A) is a discrete G-module. Clearly, 
Horn (Z(Ga), A) can be identified with the additive group of all 
functions defined on Ga taking values in Ay i.e. with the additive 
group of those functions on G with values in A which are constant on 
each coset of G mod Na. Since G is totally disconnected and A is dis­
crete, we may then consider Mi(G, A) as the G-module of all con­
tinuous functions defined on G taking values in A, where the action 
of G on Mi(G, A) is defined by: 

(*ƒ)« = f(<rh), f e I f i(G, i l) , * G G. 

We now consider the tensor product Z(Ga) ®X of Z(Ga) and X over 
Z. Clearly, Z(Ga) ®X is a compact G-module. Furthermore, the 
canonical homomorphism Gp-^Ga again induces a continuous homo­
morphism ypatp of Z(Gp) ®X onto Z(Ga) ®X. Hence, the inverse limit 
of the family of compact G-modules Z(Ga) ®X relative to the homo­
morphisms \f/a,p gives us a compact G-module M2(G, X). 

Now, by the assumption, there is a dual pairing (a, x) of A and -X". 
Then, there also exists a unique dual pairing (s, t)a of the discrete 
G-module Horn (Z(Ga), A) and the compact G-module Z(Ga) ®X such 
that 

(S, W ® X)a = (s(w)y X) 

for any 5 in Horn (Z(Ga), A), w in Z(Gc), and x in X. Since 

(s, 1>aAt'))a = (**.«(*), 0 * s G Hom(Z(G«), i l) , *r G Z(G*) ® X, 

for NpQNai those pairings (5, J)« together define a dual pairing of 
M\{G, A) and Mi(G, X), We can thus obtain, for each dual pair 
{i4, X}, a pair of dual G-modules Mi(G, i l ) and Af2(G, X). 

2. Some definitions. 2.1. Let T be a multiplicative topological 
group isomorphic with the additive group of £-adic integers Op. We 
shall fix such a group T once and for all in the following discussions. 
r is a totally disconnected compact abelian group and, for each 
n*zO, it contains an open subgroup Tn such that T / r n is a cyclic 
group of order pn. We have, then, a sequence of subgroups r = r < O r i 

Cf. the definition of af below. 
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D r o • • • , and these subgroups form a fundamental system of 
neighborhoods of the identity 1 in T. Furthermore, there exists no 
nontrivial closed subgroup of T other than the r» . 

For convenience, we take an element y of T not contained in I \ and 
fix it once and for all in the following. For each n^O, put 

7n = 7P" 

Then, each yn generates an infinite cyclic group which is everywhere 
dense in Tn. In particular, 7 = 7 0 generates an everywhere dense sub­
group in T. We also put 

con is an element of the group ring of the cyclic group generated by 7 
over the ring of rational integers Z. 

2.2. In what follows, up to the end of §5, we shall exclusively deal 
with ^-primary discrete or compact abelian groups which are also 
T-modules in the sense of 1.3. Therefore, if there is no risk of mis­
understanding, we shall call those groups simply discrete or compact 
modules. Similarly, T-invariant subgroups, T-homomorphisms, etc., 
of those modules will be simply called submodules, homomorphisms, 
etc. 

Let A be such a discrete module. For each n^0> we denote by An 

the submodule of all elements am A such that aa = a for every <r in 
r „ . Since yn generates an everywhere dense subgroup of Tn, An is the 
submodule of all a m A satisfying yna = a, i.e. a>wa = 0. Since rw + i is 
contained in Tn, An is a submodule of An+i. 

LEMMA 2.1. A is the union of the submodules An, n^O. 

PROOF. Let a be any element in A. Since 1 • a = a, A is discrete and 
the mapping <rXa—*ra is continuous, there exists a neighborhood 
r „ (n ^ 0) of 1 in T such that aa — a for every a in the neighborhood 
r n . a is then contained in An. 

We notice that , for a discrete abelian group A with operator do­
main T, the continuity of the mapping crXa-*aa follows, conversely, 
from the fact tha t A is the union of all An, ngiO. 

For each w^O, let .4* denote the submodule of A generated by ele­
ments of the form (1— a) a where <r and a are arbitrary elements in 
rw and A respectively. Since yn generates an everywhere dense sub­
group of rw , An coincides with oonA = (1 —yn)A. 

Now the discrete module A will be called n-regular if An =A, and 
A will be called regular if it is w-regular for all n è 0. Clearly, a homo-
morphic image of an w-regular (regular) module is w-regular (regular). 
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In particular, any quotient module A/B of an w-regular (regular) 
module A is w-regular (regular). The sum of w-regular (regular) 
submodules of a discrete module is also w-regular (regular). Hence, 
every discrete module has a unique maximal w-regular (regular) sub-
module. 

LEMMA 2.2. Let B be a submodule of a discrete module A and let Bn 

and Cn be the submodules of B and C~A/B, respectively, defined 
similarly as An for A. Then, Bn=AnC\B, and, if B is n-regular, 
Cn = (An+B)/Bç*An/Bn. 

PROOF. I t is clear from the definition that Bn—AnC\B and that 
(An+B)/B is contained in Cn. Suppose B be ^-regular. Let â be any 
element in Cn and a an element of A in the residue class a. As œnâ = 0, 
cona is contained in B, and, as B is w-regular, cona = œnb for some bin B. 
a' = a — b is then also in the same residue class â and it is contained in 
An. Hence, Cn is contained in (An+B)/B. 

2.3. We now define a certain kind of discrete modules. 
Let A be a discrete module and An (n^O) the submodules of A as 

defined in 2.2. A is called T-finite if every An is a group of finite rank, 
and A is called strictly Y-finite if every An is a finite group. 

Suppose A be strictly T-finite. Then, the order of the finite group 
An is a power of p. We denote the exponent of p in the order of A n by 
c(n; A), For given A, c(n; A) then defines a nondecreasing function of 
the integers n^O, and we call it the characteristic f unction of the 
strictly T-finite discrete module A. 

Clearly, a submodule B of a T-finite discrete module A is also T-
finite. If A is strictly T-finite, so is B, and c(n; B)^c(n; A) for all 
w^O. The following lemma is also an immediate consequence of 
Lemma 2.2 and of the definition. 

LEMMA 2.3. Let B be a regular submodule of a discrete module A. 
Then, A is {strictly) T'-finite if and only if both A/B and B are (strictly) 
Y-finite, and, if A is strictly T-finite, 

c(n; A) = c(n; A/B) + c{n\ B), 

for all n ^ 0. 

2.4. We now consider compact modules, i.e. ^-primary compact 
abelian groups which also form T-modules. 

Let X be such a module. For each n^O, let Xn be the closed sub-
module of all a in X satisfying aa = a for every a in Tn, and X* the 
closure of the subgroup of X generated by all elements of the form 
(1— <r)x where cr and x are arbitrary elements of Tn and X, respec-
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tively. As yn generates an everywhere dense subgroup of Tn, Xn is 
the submodule of all a in X satisfying o>n<z = 0, and -X"* coincides with 

Now, as stated in general in 1.3, there exists a discrete module A 
such that A and X form a pair of dual T-modules, and such an A is, 
up to isomorphisms, uniquely determined by X, Let (a, x) be the 
dual pairing of A and X such that (era, ax) = (a, x) for every a in T. 
Since 

((1 — <f~x)a, #) = (a, (1 — <r)x), a G A, x G -XT, o- G T, 

both {-4rt, X*} and {̂ 4*, -X"n} are pairs of mutually orthogonal sub-
modules of A and X, respectively, relative to the pairing (a, x). 
Therefore, An and X/X% form a pair of dual T-modules, and so do 
A/A* and Xn. By Lemma 2.1,-4 is the union of all An (n<£0). Hence, 
by the above, the intersection of all X* (n^O) is 0. It also follows 
that A is ^-regular (i.e. A% = A) if and only if Xn = 0. 

Now, we call a compact module X T-finite if every group X/X* 
has a finite rank, and we call it strictly T-finite if every X/X* is a 
finite group. In other words, a compact module X is called (strictly) 
T-finite if and only if the discrete module A dual to X is (strictly) 
T-finite. An n-regular (regular) compact module X is defined simi­
larly, either by Xn = 0 (for all n ^ 0) or by the fact that it is dual to an 
w-regular (regular) discrete module. 

Suppose that X be strictly T-finite. By the definition, X/X* is a 
finite p-group for every w^O, and we denote by c(n; X) the exponent 
of p in the order of X/X*. We thus obtain a nondecreasing function 
c(n; X) of the integers n*z0 and call it the characteristic function 
of the strictly T-finite compact module X. Clearly, if A is a strictly 
T-finite discrete module dual to X, then 

c(n\ A) = c(n; X) 

for all n^O. 
In the following, we shall consider the structure of discrete modules 

and that of compact modules in parallel ; by the duality between dis­
crete and compact modules, any results on discrete (strictly) T-finite 
modules will then immediately give us corresponding results on com­
pact (strictly) T-finite modules, and vice versa. 

2.5. Let G be a compact group containing a closed normal sub­
group X such that X is a ^-primary compact abelian group and that 
G/X = T. Then T acts on X in an obvious way and X is thus made 
into a compact (T-)module in the sense of 2.2.5 Furthermore, it is 

Of course, we understand that X is then considered as an additive group. 
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easy to see that the group extension G/X splits. Hence the structure 
of the compact group G is completely determined by the structure of 
the compact module X. On the other hand, given any compact 
module X, we can immediately find a compact group G to which X 
is related as stated above. Thus, there is a one-one correspondence 
between t h e set of all types of compact modules and the set of all 
types of group extensions of ^-primary compact abelian groups by I \ 

In such a correspondence, the fact that a compact module X is 
JT-finite can be interpreted for the corresponding compact group G 
as follows: let Gn (n^O) be the closed subgroup of G such that 
XQGn and Gn/X = Tn. By a simple computation of commutators in 
G, we see that the topological commutator group [Gn> Gn] of Gn is 
equal to the submodule X%=unX of X given in 2.4. Therefore X is 
T-finite if and only if X/[Gn, Gn] has a finite rank for every w^O, or, 
equivalently, if and only if Gn/[Gn, Gn] has a finite rank for every 
n^O. 

In our later applications, T-finite compact modules will be ob­
tained from compact groups such as G in the manner as described 
above. 

3. Modules of finite ranks. 3.1. Clearly, every discrete or compact 
module of finite rank is T-finite. 

Let A be a discrete module of finite rank. As a ^-primary abelian 
group, A is then the direct sum of a finite group and a subgroup B 
isomorphic with Z^«, the direct sum of I copies of Zp°° (Z^O). B is the 
maximal divisible subgroup of A and is a characteristic subgroup of 
A. Hence B is also a (r-invariant) submodule of A. We shall next 
study the structure of such an A in the case A =B, i.e. in the case A 
is divisible. 

LEMMA 3.1. Let A be a divisible discrete module of finite rank. Then 
A is the direct sum of a regular submodule B and a submodule C such 
that U)™C = 0 for some w ^ O and w^O. Furthermore, such a decomposi­
tion A=B + C is unique for At and B is also the unique maximal regu­
lar submodule of A. 

PROOF. Let B be the intersection of the submodules u%A for all 
w ^ O and w^O. As a homomorphic image of divisible A, every off A 
is also divisible, and, if m'^m, n'^zn, then Ù$A is contained in 
co™A. Since A is of finite rank, it follows that B —o^A whenever both 
m and n are sufficiently large, i.e. whenever m^m0 and n^n0 for 
some fixed WoèO, Woâ̂ O. But, then, coni?=co™+\4 =B for any n^n^ 
and B is, hence, a regular submodule of A. 

Let C' be the kernel of the endomorphism of A : a-^oS^a. Since 
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üQA^B^agfB, we have A=B + C', and since A and B are both 
divisible, we also have A =B-{-p8C' for any s^O. Now, choose s so 
large that C — p8C is divisible. I t then follows from the isomorphism 
A/C^B=o)^A that the rank of A is the sum of the ranks of B 
and C, and, hence, the sum A =B + C is direct. 

Next, suppose that A = J3* + C* be any direct sum decomposition 
of A such that 5 * is regular and aCC* = 0 for some m and n. Since 
a#C* = 0 for any m'^m and w'^w, we may assume that m^m0 and 
w â % We have then B*=<£B*=uffil = B. Therefore, B=«Çi4 
= « C J 5 + U < J C * = 5 + « C C * and, consequently, «CC* = 0. Thus C* 
is contained in C', and since C* is divisible as a direct summand of A, 
we then see easily that C* = C. The fact that B is the unique maximal 
regular submodule of A can be proved in a similar way. 

By the duality between discrete and compact modules, we can im­
mediately obtain the following result from the above lemma: 

LEMMA 3.2. Let X be a torsion-free compact module of finite rank. 
Then X is the direct sum of a regular submodule U and a submodule V 
such that u%V = 0 for some m ^ O and n^O. Furthermore, such a de­
composition X— U+ V is unique for X, and V also is the unique mini­
mal submodule of X such that X/ V is regular. 

3.2. Let X be as in Lemma 3.2 and let I be the rank of X. As a 
^-primary compact abelian group, X can be then identified with Ol

p, 
the direct sum of I copies of 0P, and the mapping x—>yx defines a 
continuous automorphism of (3V. Thus, there exists an IXI matrix 
M with entries in 0P such that the determinant of M is a p-adic unit 
and that 

yx = xM 

for any x = (xu • • • , xi) in 0\ (XiEOp).
6 Put Mn = M*n (n ^ 0 ) so that 

ynx = xMn, oon% = x(I — Mn), x G X, 

I being the 1X1 identity matrix. Since the intersection of all X* = o)nX 
is 0, there exists an s*z0 such that X* is contained in pX. We have 
then 

(2) M.ml mod p, M8 = M*>*. 

On the other hand, if we are given any 1X1 integral p-adic matrix 
M satisfying (2) for some s ̂  0, we can uniquely define a structure of a 
T-module on Ol

P so that yx = xM holds for any x in the compact 
6 xM is the product of the vector (1X/ matrix) x and the 1X1 matrix M% and it is 

again a vector in X—Op. 
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module X~Ö'V\ the condition (2) then ensures the continuity of the 
action of T on C?P. Furthermore, two such matrices Mi and M2 define 
isomorphic compact modules on 0\ if and only if M%=TMiT^x with 
a suitable integral £-adic matrix T whose determinant is a £-adic 
unit. Thus the classification problem for all torsion-free compact 
modules of rank I can be reduced to the problem of classifying all 
1X1 integral £-adic matrices satisfying (2) for some s^O, with respect 
to the equivalence as stated above. 

Now, let X and M be again as above. For any n^5+1, it follows 
from (2) that 

Mn
 s I mod p2, 

namely, that Mn = I+P2N with a suitable integral £-adic matrix N. 
By a simple computation, we then see that, for any /SO, 

»-1 * • 

*«-0 

with an integral £-adic matrix Ni. Since the determinant of I+pNi 
is a £-adic unit, it follows that 

xÇiï M!\ = pX(I + pNà = PX. 

Putting, in general, 

(3) vm,n = X) 7»» fn â n à 0, 

we then get from the above that vn+tinX — p%X and, consequently, 
that 

[X: vm,nX] = [X: pr*-*X] = f'<—»>, 

for any integers m^n^s + l. Thus, the following lemma is proved: 

LEMMA 3.3. Let X be a torsion-free compact module of rank I. Then 
there exists an integer w0^0 such that, for any integers m, n satisfying 
m^w^wo, the index [X: vm,nX] is given by 

[X: vm,nX] = f*<—*>. 

3.3. Let X and M be as above. Since Xi>=a)nX — X(I — Af»), 
X/X* is a finite module if and only if the determinant \l — Mn\ is 
different from 0. Therefore, X is strictly T-finite if and only if none 
of the pnih roots of unity, for » = 0, 1, 2, • • • , is a characteristic root 
of the matrix M. 
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LEMMA 3.4. A torsion-free compact module of finite rank is strictly 
Y-finite if ana only if it is regular. 

PROOF. AS stated above, such a compact module X is strictly In­
finite if and only if \l— Mn\ 9*0 for every n^O. But the condition 
| I — Mn\ 7*0 is equivalent to the fact that there is no ^c^O in X 
satisfying x(I — Mn) = 0, i.e. <owx = 0. Thus X is strictly r-finite if and 
only if the submodule Xn of X as defined in 2.4 is 0 for every n^O. 
The lemma then follows immediately from the remark also given in 
2.4. 

By the duality, we see that a divisible discrete module of finite rank 
is strictly T-finite if and only if it is regular. 

LEMMA 3.5. Let X be a torsion-free compact module of rank I and let 
X be strictly Y-finite. Then there exists an integer n0 such that, for n ^ n0, 
the characteristic function of X is given by 

c(n; X) = In + u, 

where u is a suitable integer independent of n. 

PROOF. By the previous lemma, X is regular and Xn = 0 for every 
w^O. Hence the endomorphism x—>œnx of X is one-one, and we see 
that 

[X: vm>nX] = [o)nX:conVm>nX] = [œnX:œmX], 

for any w ^ w ^ O . But, Lemma 3.3f [X:vm,nX]=pl^m-n) when m^n 
z^no. Therefore, if n^no, 

[X:a>nX] = [X:œnQX][œnoX:œnX] = [X : œnQX]p^~^, 

and if we put [X: o)nQX]p-lno = pu, then 

c{n\ X) = I n + u, n §; no. 

Again, by the duality, we obtain the corresponding result on divis­
ible discrete modules of finite rank I; if A is such a module, there 
exists an integer n0 ^ 0 such that 

c{n\ A) = In + u, n ^ m, 

with a suitable constant u. 

4. Bounded modules. 4.1. We shall next consider T-finite discrete 
modules of bounded order. Clearly, all those modules are also strictly 
T-finite. 

We shall first define an important class of such modules. Let m be 
any non-negative integer. Let Mi(Y, Zpm) be, as defined in general in 
2.4, the discrete T-module formed by all continuous functions on Y 
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with values in Zpm> Clearly, if a is any element in Mi(Tr Zpm), then 
pma = 0. Hence, Mi(T, Zpm) is a bounded module, and we denote it 
simply by E(m)/As noticed above, pmE(m)=Q, and, in particular, 
£ ( 0 ) = 0 . 

LEMMA 4.1. Let 0 ^ / ^ m . Then pm~lE(m) is the submodule of all a in 
E (ni) such that pla = 0, and 

E(m)/pm~lE(m) & plE(m) S E(m - I). 

PROOF. The endomorphism c—>plc of the cyclic group Zpm maps 
Zpm onto plZpm^Zpm-i and its kernel is pm~~lZpm. Hence, the endo­
morphism a-*pla of E(m) induces the above isomorphisms. 

LEMMA 4.2. The discrete module E(m) is bounded, regular and strictly 
Y-finite, and its characteristic junction is given by 

c(n; E(m)) = mpn
7 » ^ 0 , 

PROOF. By the definition, E(m) is the union of a sequence of sub-
modules H o m ( Z ( r / r n ) , Zpm), n^O, each considered as the submodule 
of all continuous functions on T with values i n ZdPm which are con­
stant on every coset of V mod Tn. I t is then clear that Hom(Z(r /T n ) , 
Zpm) coincides with the submodule E(m)n of all a in E(m) such that 
aa — a for every cr in Tn. Since Hom(Z(r /T n ) , Zpm) is a group of order 
pmpn

} E(m) is strictly T-finite and c(n\ E(m)) =mpn. 
Now, let n^O be fixed. For any element a in E(m), choose an 

integer s^n so tha t a is in E(m)8 and that v8,na — Oy where v8>n is de­
fined as (3) in 3.2. This is always possible, because if a is in E(m)t, 
t^n and s = t+m, then ^s,na = ^m^«,w^ = 0. On the other hand, as a 
( r n / r s ) -group, E(m)8 = Hom(Z(F/r8), Zpm) is isomorphic with the 
direct sum of pn copies of Zpm(Tn/T8) = Z(Tn/T8) ®Zpm. Hence, the 
cohomology groups Hl(Tn/T8, E(m)8) are 0 for all i. Since v8,na = 0 
and since Tn/T8 is a cyclic group generated by the coset of yn mod T8t 

there then exists an element b in E(m)8 such that a = (1 —yn)b—o)nb. 
As a was an arbitrary element of E(m), E(m) is w-regular for every 
w^O, and the lemma is proved. 

4.2. Now, let A be a. discrete module such that pA = 0. We may 
then consider i a s a vector space over the prime field P of character­
istic p and the endomorphism a-^o)oa = (l—y)a as a linear trans­
formation of the vector space. Since P is a field of characteristic p, 

pn pn pn 

œna = (1 — 7 )a = (1 — 7) a = cooa, w ^ O , 

for every a in A. Hence, given any element a of A, there always exists, 
by Lemma 2.1, an integer iètO such tha t coJa = 0. Suppose that A is 
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r-finite and that the submodule AQ of A defined as before has a 
finite order p* (s^O). We then see easily that the vector space A is 
decomposed into the direct sum of s subspaces AU) such that each 
AU) is a direct indecomposable submodule of A and has either a 
finite or a countable number of basis a[j\ 0 _ ^ < d i m .4 0 ) , over P , 
with the property ca^ = Q and cooa^— a^lx for i>0. 

Now, consider the module £(1) . Since pE(l)=0, d i m £ ( l ) = o o , 
and since £( l )o has order p, it follows from the above that £(1) is 
direct indecomposable and has a basis eit 0 ^ i < °o, such that co0eo = 0, 
co(A=e*_i for i>0. 

LEMMA 4.3. Let A be a Y-finite discrete module such that pA = 0. Then, 
A is the direct sum of a finite submodule and a finite number of submod­
ules each isomorphic with £ (1) . 

PROOF. By what was mentioned above, A is the direct sum of a 
finite number of submodules A 0 ) as described there. Suppose A 0 ) is 
infinite dimensional. Then, Au) has a basis a^\ 0^i< <x>, such that 
o)oao}) = 0 and a?0a^)= atfli for i>0, and it is clear that there is an iso­
morphism <f> of the module £(1) onto A™ such that ^>{et) = 
0 ^ i < o o . Thus, every infinite dimensional Au) is isomorphic with 
£(1) , and the lemma is proved. 

It follows immediately from the lemma that if the rank of a T-
finite discrete module A is infinite, A contains a submodule isomor­
phic with £ (1 ) ; for the submodule A' of all a in A satisfying pa — 0 
is then an infinite T-finite discrete module with the property pA' = 0 
and, hence, contains a submodule isomorphic with £(1) . 

Now, let B be an infinite submodule of £(1) . By the above, B con­
tains a submodule Bf isomorphic with £(1) . Then, by Lemma 4.2, 
the submodules £ ( l ) w and BJ[ — E{l)nr\Br have the same order pn. 
Hence £ ( l ) n = £ n ' for all ?z = 0, and £(1) = B ' = £ . Thus, there is no 
infinite submodule of £(1) except £(1) itself. It follows, in particu­
lar, that a regular submodule of £(1) is either 0 or £(1) itself, for a 
nontrivial finite submodule of £(1) obviously can not be regular. 

4.3. We shall now prove some lemmas on the modules £(m) . 

LEMMA 4.4. Let B be a regular submodule of £(m) , m ^ O . Then, 
B = plE(m) for some /, O ^ l ^ w . 

PROOF. If m~0} the lemma is trivial. Suppose that m>0 and that 
the lemma is proved for m — 1. Consider the submodule B 
= (B+pE(m))/pE(m) of E(m)/pE{m). B is a regular submodule of 
E(m)/pE(m) and the latter is isomorphic with £(1) by Lemma 4.1. 
Hence, by the remark in 4.2, either 'B = E(m)/pE(m) or 15 = 0. In 
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the first case, E(m)=B+pE(m) and, consequently, E(m)~B.7 In 
the second case, B is contained in pE(m). But, as pE(m)~E(m — l) 
by Lemma 4.1, it follows from the induction assumption that 
B^pl~l{pE{m))^plE{m) for some O^Z^w. 

LEMMA 4.5. Let m be any positive integer. Then, E(m) has a basis eif 

0 S i < °°, such that 
(i) every ei has order pm, 
(ii) <oO0o = 0 and œ0ei = e»-_i /or i > 0. 

PROOF. For w = l, the lemma is already proved in 4.2. Let m>V 
By Lemma 4.1, E(m)/pE(m)=E(l). Hence, we take a basis en 
0^i< oo, of E(m)/pE(m) such that co0eo = 0 and cooe* = £»_i for i > 0 . 
Let e0' be an element of E(w) such that ê0 is the coset of eó mod pE(m). 
Since co0ê0 = 0, a>0eo' is contained in pE{m). But, by Lemmas 4.1, 4.2, 
pE{m) is regular. Hence there is an element b0 in pE(m) such that 
coô o' =coo&o. Put eo = eo ""&o. Then, e0 is still in the coset ê0 and co0eo = 0. 
Let e/ be an element of E(m) such that h is the coset of e{ mod pE(m). 
Since ct?0̂ i = ^o, o W — 0o is contained in pE(m), and, as pE{m) is 
regular, there is an element 6i in pE(m) such that coô i' — e0=co0&i. Put 
e\~e{ —bi. Then, e\ is again in the coset l\ and co0ei = g0. Proceeding 
similarly, we can find elements e^ eu ^2, • • • in E(m), successively, 
so tha t each 0; is in the coset ëi and satisfies the condition (ii) of the 
lemma. As the cosets of d mod pE(m) form a basis of E(m)/pE(m)1 

the elements et- generate the group E(m). Let w be any positive in­
teger. Take an integer 5 such that all e0, et, * • • , en-i are contained in 
E(m)s. Since 00, 01, • • • , 0n-i are independent mod pE(m) and, con­
sequently, also mod pE(m)8} and since £ ( w ) , = Hom (Z(r /T 8) , Z^w) 
is an abelian group of type (pm, • • • , £m) with rank p8, the » ele­
ments eo, 0i, • • • , 0n-i generate a subgroup of order £mn in E(m)8. 
Therefore, every one of £0, 01, • • • , #n-i has order £m and they form 
a basis of the subgroup generated by themselves. Thus, the lemma is 
proved. 

LEMMA 4.6. Let A be a regular discrete module satisfying pmA = 0, 
m>0, and let B be a submodule of A containing pA such that B/pA 
=JS(1). Then f there exists a homomorphism <j> of E(m) into A such that 
<t>{E(m)) +pA =B and 4>"1(pA) =pE(m). 

PROOF. Since B/pA=E(l), we «can find a basis âif 0 ^ i < o o , of 
B/pA such that co0ao = 0 and a>o#» = #»-_i for i>0. As A is regular, the 

7 In general, if B is a subgroup of a bounded ^-primary abelian group A and if 
A-B+pA, then A-B\ A*=B+pA implies A**B+piB+pA)**B+p*A*= • • • 
-*B-f/>M « B . This will be often used in the following arguments. 
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homomorphic image pA of A is also regular. Hence, by a similar 
argument as in the proof of Lemma 4.5, we can find elements a^ 
0^i< co, in B such that a* is in the coset ai and that Ü>O#O = 0 and 
œ0ai = ai-i for i > 0 . Now, let e^ Q^i< <*>, be a basis of E(m) as given 
in Lemma 4.5. Since pmai = Q, 0^i< oo, there is a homomorphism 0 
of the module E(m) into 5 such that $(£*) = #*, 0 ^ i < oo. I t is then 
clear from the choice of ai that <j>(E(m)) +pA =B and that # induces 
an isomorphism of E(m)/pE(m) onto B/pA. Hence 4>~"1(pA) = pE(m), 

4.4. Let mi, • • • , m8 be any set of non-negative integers. We de­
note by E (mi y • • • , w«) the direct sum of 22 (mi), • • • , E(m8): 

E(mh . . . , * » , ) = E(*»i) + • • • + E(w8). 

If w i = • • • = m , = w, E(mi} • • • » w«) will be denoted also by 
E(m)8. Clearly, E(mi, • • • , w«) may be also denned as the module 
of all continuous functions on V with values in the direct sum 
Zpmi+ • • • +Zpm8. I t follows immediately from Lemma 4.2 that 
22(mi, • • • , m8) is a bounded, regular, strictly T-finite, discrete mod­
ule and its characteristic function is given by 

c(n\ E(mh • • • , m8)) = mpn, w ^ O , 

where m — X^î-i mi-

LEMMA 4.7. Let D be a submodule of E(m)8 isomorphic with 22(1). 
Then, there exists a submodule C of E(m)8 such that C=.E(m) and 
prn-ic=;D. 

PROOF. AS stated in the proof of Lemma 4.1, the endomorphism 
a-^pm~xa of E(m)8 induces an isomorphism of E(m)8/pE(m)8 onto 
pm~1E(m)8

t Furthermore, by the same lemma, pm~~lE(m)8 is the sub-
module of all a in E(m)8 satisfying pa — 0. Hence, D is contained in 
pm~lE(m)*, and there exists a submodule B of E(m)8 containing 
pE(m)8 such that p^B^D, B/pE(m)8^D^E(\). Since pE(m)8 is 
regular by Lemmas 4.1, 4.2, it follows from Lemma 4.6 that there is a 
homomorphism <f> of E(m) onto a submodule C = <t>(E(m)) of E(m)8 

such tha t C+pE(m)8 = B and <j>~l(pE(m)8) = pE(m)1 inducing an iso­
morphism of E(m)/pE(m) onto B/pE(m)8. Since the endomorphism 
ar—^pm~laf of E(m) also induces an isomorphism of E(m)/pE(m) onto 
pm-lE(m)y <f> maps the submodule pm~~lE(m) of E(m) isomorphically 
onto the submodule D = pm~lB=pm~"lC of C Hence <j> must be an 
isomorphism, and the lemma is proved. 

LEMMA 4.8. Let D be a submodule of E (mi, • • • , m8)} isomorphic 
with 22(1). Then, E(miy • • • , m8)/D is a homomorphic image of some 
E(ni, • • - , » * ) where X î - i w i < I X i ^». 
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PROOF. We use induction on s. If 5= 1, the lemma is an immediate 
consequence of Lemmas 4.1, 4.4. Suppose s>l. We may of course 
assume W i ^ w 2 è • • • ^ w s > 0 . Put m = m8 and 

A = E(mh - • • , m8) = A' + A", 

A' = E(mi, • • • , m8-i), A" = E(tn9). 

If D is contained in ^4', then A/D^(A'/D)+A", and the lemma can 
be proved immediately by applying the induction assumption on 
A'/D = E(mi, • • • , ma-Ji)/D. Hence, we may assume that D is not 
contained in A'. 

Now, let B denote the submodule of all a in A satisfying pma = 0, 
and put 

B' = BC\ A', N' = p™~lB', N" = p*»~lA". 

Then, B^E(m)\ N" =pm-1E(m)^E(l)f and we have also the follow­
ing direct sum decompositions: 

B = B'+ A", p™~lB = N' + N". 

Since pm~lB is the submodule of all a in A satisfying pa — Q,D is con­
tained in pm~1B. But, by the assumption made above, D is not con­
tained in Nf. Hence, (N'+D)/N' is a nontrivial submodule of 
p*-iB/N'&N"^E(ï). As a homomorphic image of D^E(l)t 

(N'+D)/N' is also regular. Hence, by the remark in 4.2, or by Lemma 
4.4, N'+D = pm~1B. 

Now, by Lemma 4.7, B contains a submodule C such that C=E(m) 
and pm~lC = D. I t then follows tha t 

p™~lB = N' + Z> = ^ « - 1 5 / + #1Mr-lC = pm~\B' + C). 

As J5 is isomorphic with E(m)8, pB is the submodule of all bin B such 
that the pm~1b = 0. Hence the above equality implies that B = (Br + C) 
+pB and, consequently, that B=B' + C. Therefore, 

A = A' + A" = ,4' + B = 4 ' + B' + C = i l ' + C, 

though the sums are not necessarily direct. But, then A/D is a 
homomorphic image of the direct sum of A' = E(mi, • • • , tn8-i) and 
C/D^C/pm~lC£iE(m--V). I t is thus proved that A/D is a homo­
morphic image of E(m\, • • • , m8-\, ms — 1), q.e.d. 

4.5. A discrete module E will be called elementary if E is bounded, 
regular, and T-finite. 

LEMMA 4.9. 4̂ discrete module E is elementary if and only if E is a 
homomorphic image of a module E(m\y • • • , m8). 
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PROOF. Let E be an elementary discrete module. As a homomorphic 
image of a regular module E, the submodule pE is also regular. 
Hence, by Lemma 2.3, the regular module E/pE is also T-finite, for 
E is T-finite by the definition. Then, by Lemma 4.3, E/pE is the 
direct sum of a finite number of submodules E ( 1 ) , • • • , E ( s ) each 
isomorphic with E ( l ) . Let E ( i ) be a submodule of E containing pE 
such that £<*>=£<*>/££. Since £WE = 0 for some m^O» there exists, 
by Lemma 4.6, a homomorphism <£; ( l ^ ' ^ s ) of E(ra) onto a sub-
module £ ( i ) of E such that £<*>+ƒ>£ = £<*>. We have, then, E 
= £ ( i ) + . . . +jS(«) 5 =5(i)+ . . . +j3 (•>+ƒ>£, and, consequently, 
also E = B™ + • • • +£<*>. Since B<*>=0<(E(ro)), it is clear that £ 
is a homomorphic image of E(m)8 — E(mf • • • , w). 

Suppose, conversely, E is a homomorphic image of a module 
E(mi, • • • , w,). Among all such E (mi, * • • , ms) of which E is a 
homomorphic image, we choose an E (mi, • • • , m8) for which 
2 * - i m* 'ls minimal. Put E = E(mi, • • • , m8)/D. Suppose, now, that 
D is an infinite module. Then, since D is bounded, it can not be of 
finite rank. Hence, by the remark in 4.2, D has a submodule D' iso­
morphic with E ( l ) . But, by Lemma 4.8, E (mi, • • • , m8)/D' is then 
a homomorphic image of a module E(«i, • • - , nt) where 22j«i ^y 
< 22*-1 w** Hence E is also a homomorphic image of E(ni1 • • • , # * ) 
with 22î-i w i < 52*-1w*» a n ( i t n i s contradicts the choice of 
E(mi, • • , m«). It is thus proved that D is a finite module. 

Now, since E (mi, • • • , w«) is bounded and regular, so is E 
= E(wi, • • • , m8)/D. We shall next prove that E is (strictly) T-
finite. Put A — E(m\, • • • , m8) and denote, as usual, by An the sub-
module of all a in A satisfying o)na = 0, and by En the submodule of E 
defined similarly for E. By the definition, An = oon~

1(0) and En 

= œ~l(D)/D. However, as o)nA = A, co^1(i>)/co^1(0) is isomorphic with 
D. Since Z) is finite, it then follows tha t the order of En is equal to the 
order of An. Thus, by the remark at the beginning of 4.4, we see that 
En is a finite module of order pmpn where m = XX* i m%* % *s> therefore, 
T-finite, and the lemma is completely proved. 

At the same time, the following lemma is also proved by the above 
argument : 

LEMMA 4.10. Let E be an elementary discrete module. Then, there is a 
module E(mi, • • • , m8) and a finite submodule D of E (mi, • • • , m8) 
such that EÇ^E(mi, • • • , m8)/D. The characteristic function of E is 
then given by 

c(n; E) = mpn, n ^ 0, 

where m= 52î-i m«-
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LEMMA 4.11. Let B be a finite submodule of an elementary discrete 
module E. Then 

c(n; E/B) = c(n; E), 

for all n^O. 

PROOF. Let £ = £ ( m i , • • • , m8)/D, as stated in the previous 
lemma. Then, there is a submodule C of E (mi, • • • , m8) containing 
D such that 

E/B 9Ë E(mh • • • , m8)/C, B ^ C/D. 

As C is also a finite module, we have, by Lemma 10, 

c(n; E/B) = mpn = c(n; E), 

where m== X X i m^ 

LEMMA 4.12. A homomorphic image of an elementary discrete module 
is again elementary. 

This follows immediately from Lemma 4.9. 

LEMMA 4.13. Let B be a submodule of a discrete module A. If both 
A/B and B are elementary, so is A. 

PROOF. Since both A/B and B are bounded, regular modules, A is 
also bounded and regular. By Lemma 2.3, A is also T-finite. 

LEMMA 4.14. Let B and C be submodules of a discrete module A. If 
both B and C are elementary, the sum B + C in A is also an elementary 
module. 

PROOF. Clearly, if both B and C are elementary, the direct sum of 
B and C is also elementary. Since the sum B + C in A is a homo­
morphic image of the direct sum of B and C, B + C is also elementary 
by Lemma 4.12. 

4.6. We now consider bounded T-finite discrete modules in general. 

LEMMA 4.15. A bounded T-finite discrete module A has the unique 
maximal elementary submodule E in which every elementary submodule 
of A is contained. A/E is then a finite module. 

PROOF. Clearly, for any elementary submodule E' of A, we have 
c(0; E') ^ c ( 0 ; A). Hence, there exists an elementary submodule E of 
A such that c(0; E') ^ c ( 0 ; E) for any elementary submodule E' of A. 
Put E" = E+E'. By Lemma 4.14, E" is also elementary, and EQE", 
c(0; E) ^c(0; E"). Therefore c(0; E) =c(0; E") and, by Lemma 4.10, 
c(n; E)—c(n; E") for all n^O. Then, for every n*z0, En and E" 
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have the same order and, consequently, E n = E n " . Hence, it follows 
from Lemma 2.1 that E = E", E' CE, i.e. that every elementary sub-
module of A is contained in E. 

Suppose, next, A/E be an infinite module. Then, the bounded 
module A/E can not be of finite rank. Since A/E is F-finite by 
Lemma 2.3, it has a submodule isomorphic with E ( l ) , by the remark 
in 4.2. Hence, A has a submodule B containing E such that B/E 
=E(1). As both B/E and E are elementary, so is B by Lemma 4.13. 
However, this contradicts the fact that every elementary submodule 
of A is contained in E. I t is, hence, proved that A/E is a finite mod­
ule. 

Now, as above, let A be a bounded T-finite discrete module and E 
the maximal elementary submodule of A. By Lemma 2.3, we have 

c{n\ A) = c{n\ A/E) + c{n\ £ ) , w ^ O . 

But, as A/E is a finite module, c(n;A/E) is constant for all suffi­
ciently large n. By Lemma 4.10, we have therefore the following 

LEMMA 4.16. Let A be a bounded V-finite discrete module. Then, there 
exists an integer no ^ 0 such that, for n ^ n$, the characteristic f unction of 
A is given by 

c{n\ A) = mpn + u, 

where m and u are suitable non-negative integers independent of n. 

Obviously, for given A, the integers m and u in the lemma are 
uniquely determined by the above equality, and they give us invari­
ants of the module A. In particular, we call the invariant m the weight 
of the bounded T-finite discrete module A and denote it by w(A). 
As the above proof shows, the weight of A is given by 

s 

w(A) = c(0; E) = T mh 
t=i 

if E is the maximal elementary submodule of A and if 

E = E(mh • •, ms)/D 

with finite D. We also notice that w(A) = 0 if and only if A is a finite 
module. 

LEMMA 4.17. Let A be a bounded Y-finite discrete module and B a 
submodule of A. Then, A/B is also Y-finite and 

w(A) = w(A/B) + w(B). 

PROOF. Let E be the maximal elementary submodule of A and E' 
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the maximal elementary submodule of B. Since (E+B)/B is a homo-
morphic image of E, it is elementary by Lemma 4.11. Clearly, 
A/(E+B) is a finite module and, hence, is T-finite. Therefore, by 
Lemma 2.3, A/B is also T-finite. It is then easy to see that (E+B)/B 
is the maximal elementary submodule of A/B and that w(A/B) 
= w((E+B)/B). As E' is an elementary submodule of A, it is con­
tained in EC\B, and EC\B/E' is a finite module, for B/E1 is finite. 
By Lemma 4.11, we then have w(E/Er\B)=w(E/Er) and, hence, 
w(A/B)=w((E+B)/B)=w{E/Er\B)=w(E/E'). Now, by Lemma 
2.3, 

c(n; E) = c(n; E/E') + c(n; E')y n £ 0. 

Putting n = 0, we obtain 

w{E) = w{E/E') + w(E'). 

As w(22) = w(A) and «;(£') =w(B) by the definition, and as it is shown 
above that w(E/Er) =w(A/B), the lemma is proved. 

Now, let A be again a bounded T-finite discrete module, E the 
maximal elementary submodule of A, and E^E{m\y • • • , m8) /Dwith 
finite D. We shall next show that the module E(mi, • • • , ms) with 
the property described above is uniquely determined by A. 

Let i be any non-negative integer and let A{i) denote the submod­
ule of all a in A satisfying pla = 0. Put E'^EC\A^. Since A^/E' 
is a finite module, we have, by Lemma 4.17, w(A(i)) =w(E'). Now, 
consider the endomorphism 4>: b—*p{b of E(mi, • • , ms), and denote 
by B the kernel of cj> and by C the inverse image of D under <fi. Clearly, 
E'^C/D and, hence, w(E') =w(C/D). Since D is finite, C / 5 is also 
finite. By Lemma 4.17, we have then w{C/D) =w(C) =w(B). There­
fore, w(A{i)) —w(B). However, by the definition, B is the submodule 
of all b in E(wi, • • • , ms) satisfying pib = 0. Hence, obviously, 
.B==E(wi, - - • , ns) where ^ = min (my, f), j = l, • • • , s. As w(5) 
= X J = I WJ>

 w e have 
s 

w(A{i)) = X) m i n (mh i)* 

Since i is an arbitrary non-negative integer and A(i) is a module de­
fined uniquely by A and i, the above equality shows that the nonzero 
integers in mi, • • • , ms are uniquely determined by A. The module 
E (mi, • • • , ms) is therefore also uniquely determined by ^4. 

As shown above, the nonzero integers in mi, • • • , ms are invariants 
of the bounded T-finite discrete module A and those invariants deter­
mine the structure of A up to finite modules. Furthermore, they 
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have, in various respects, similar properties as the invariants of finite 
abelian groups. For instance, we can prove, by a similar argument as 
above, that 

8 

w(plA) = X) m a x (mJ ~~ h 0)> 

for any integer i ^ O . Using Lemma 4.17, it then follows, in particular, 
tha t 

(4) w(A^) = w(A/pA). 

4.7. We shall now briefly state, without proofs, the results on the 
structure of bounded r-finite compact modules which correspond, by 
the duality between discrete and compact modules, to what we have 
proved above for bounded T-finite discrete modules. 

For any non-negative integer m, we denote by Y(m) the compact 
module MI(TJ Zpm) as defined in general in 1.4. Since the finite group 
Zpm is self-dual, E(m) and Y(m) form a pair of dual T-modules, and 
it follows tha t Y(m) is a bounded T-finite compact module. More 
generally, for any non-negative integers mi, • • • , m8t we denote by 
F(mi, • • • , m8) the direct sum of F(m;), i = l, • • • , s. F(mi, • • • ,m8) 
is again a bounded T-finite compact module and it is dual to the dis­
crete module E (mi, • • • , ms). 

A compact module Y is called elementary if it is bounded, regular 
and T-finite, i.e. if Y is dual to an elementary discrete module. By 
Lemma 4.9, a compact module Y is elementary if and only if it is 
isomorphic with a submodule W of some F(mi, " • * » #*,). In fact, 
if Y is elementary, we can find F(wi, • • • , m8) and a submodule W 
of F(wi, • • • , m8) isomorphic with F such that F(mi, • • • , m8)/W 
is finite. 

In general, a bounded T-finite compact module X has the unique 
minimal submodule U such that X/U is elementary. U is a finite 
module and, by the above, X/U is isomorphic with a submodule of a 
module Y (mi, • • • , m8) having a finite index in F(mi, • • • , m8). 
The nonzero integers in mi, • • • , m8 are, then, invariants of X and 
they determine the structure of X up to finite modules. The sum 
m = 2Z*-i mi is again called the weight of X and is denoted by w(X). 
For the characteristic function c(n; X) of X, we also have the result 
corresponding to Lemma 4.16, for c(n; X) =c(n; A) if A is a bounded 
T-finite discrete module dual to X. 

5. T-finite modules in general. 5.1. We now consider the T-module 
Mi( r , Zp») defined in 1.4 and denote it by £(<»). By the definition, 
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£(oo) consists of all continuous functions on Y with values in Zp«. 
Since V is totally disconnected, every continuous function in £(oo) 
takes only a finite number of distinct values in the discrete group 
Zp«>, which, on the other hand, may be considered as the union of 
finite cyclic groups Zpi, I^ 0. Hence, if, for each l = 0, E( oo ) (*) denotes 
the submodule of all a in E( oo ) satisfying pla = 0, E( oo ) (*) is naturally 
isomorphic with E(Z), and £(<») is the union of all those E(oo)(Of 

Z^O. It then follows immediately that £(<*>) is a discrete module in 
the sense of 2.2 and that it is also regular and T-finite, though not 
bounded. 

More generally, for any mi, • • • , m8 which are either non-negative 
integers or oo, we denote by £(mi, • • • , m8) the direct sum of 
E(nii), i=l, • • • , s. Clearly, E{mu • • • » ws) is again a regular In­
finite discrete module. 

Now, let A be a discrete module. For any integer l}£0, let A(l) de­
note the submodule of all a in A satisfying pla = 0. 

LEMMA 5.1. Let E(©o)« be the direct sum of s copies of E(<x>), s^O. 
A discrete module A is isomorphic with E{ oo ) « if and only if A is divisi­
ble and A™ &E(1): 

PROOF. The lemma is trivial for s = 0. Using the remark on E( oo ) (*> 
mentioned at the beginning, it is also easy to see that E(oo)« has the 
properties stated above. 

Now, let s è 1 and let A be any discrete module having the prop­
erties given in the lemma. We first prove the existence of a set of 
elements a ^ in 4 , 1 = i ^ s , 0^j< oo, l ^ f e<oo , such that the ele­
ments aîif, l = ^ = s, 0 ^ j < o o , form a basis of A(k\ such that pa\f 
= 4*~1) for ife>l and that œ0a^=0 and cooa^ = a$-.x for j > 0 . We 
use induction on the upper index fe. Since A ( 1 ) =£(1)* , it is clear from 
Lemma 4.5 that there exist elements a\)\ l^i^s, 0^j< oo, satisfy­
ing the above conditions for k = l. Suppose we have found such ele­
ments a[f in A for l^i^s, 0^j< oo, l^fe_Z. Let i be fixed. Since 
A is divisible and pA(H-1) —A(0, there is an element a in A(m) such 
that pa=;a%. We have then £(co0a) =co0ai

(o:=0. Hence, co0a is an ele­
ment of -4(1)£=E(1)8, and there is an element b in Aa) such that 
co0a=a>o&. Put a%+1)=a-b. Then, M(o+1)==4> and co04)+1)==0. Next 
we take an element a1 in -4 (H_1) such that pa'^afi. We have then 
p(o)od') = w0aj? = a$ ^ M?o+1)- Hence, co0a' — #!o+1) *s contained in 
^4(1), and there is an element V in Aa) such that o)0a

f — a?0
+1) =o)0b'. 

Put 4 + 1 ) = a ' - 6 ' . Then, ^ag+1) = ag and w 0 4 + 1 ) = 4 + 1 ) . Proceed­
ing similarly, we can obtain elements Û$+ 1 ) , l ^ i â s , 0^/"<oo, in 
i4<i+i> such that pog+1) = ag, coo4 + 1 ) -0 and «oog+ 1 )-a{Jii for 
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j > 0 . Let B be the subgroup of A(l+1) generated by those a§ + 1 \ 
l^i^s, 0 g j < o o . Since the elements a$ form a basis of Aw, we 
have pB=A{l) — pA(m). But, as A(1) is contained in-4 ( l ) , and, hence, 
also in B, we see immediately tha t B=A(-l+l). From pa§+ï> — a® 9 it 
then follows that the elements a$+1) form a basis of A(l+1\ Thus, by 
induction, the existence of a$, l = ^ s > 0 ^ j < o o , l<£&<oo, is 
proved. We notice that every a[f has order pk. 

Now, let A be another divisible discrete module such that Aa) 

=E(1)8. Then, A also contains a set of elements ay\ l^i^s, 
0 ^ j < c o , 1 rg & < oo, having similar properties as a$. But, it is then 
clear that there is an isomorphism <j> of the module A onto the module 
A such that <t>(a$) — â<f. Thus, any two discrete modules having the 
properties stated in the lemma are isomorphic with each other. Since 
£(oo)« has these properties, the lemma is proved. 

LEMMA 5.2. Let A be a discrete module and B a submodule of A iso­
morphic with E( oo )8, s ^ 0. Then, A is the direct sum of B and a suitable 
submodule C: A=B + C. 

PROOF. Let D be a submodule of A such that 5 f \ D = 0. Suppose 
A 7*B+D. Then, there exists an element am A such that a is not in 
B+D but both pa and œQa are in B+D. Put pa = b+d, bEB, d&D. 
Since BÇ^E(<x>)8, there is an element 60 in B such that b = pbo. Put 
a' =a — bo so that pa' =d. Put also co0a' = &i+di, biÇzB, di£Z>. Then, 
pbi+pdi=ooopa' =cood, and, since 5 P \ D = 0, it follows that £&i = 0. As 
5==E(oo)8, there then exists an element 62 in J3 such that £&2 = 0, 
wo&2 = &i. Put a" =a' — b2. Then, pa" = d and o)oa"~di. Hence, if D* 
denotes the subgroup of A generated by D and a", D* contains D 
as a subgroup of index p, BC\D* = 0 and D* is T-invariant, i.e. a sub-
module of A. Now, take a maximal submodule C of A such that 
23P\C = 0. By the above, we have then A=B + C, and the lemma is 
proved. 

5.2. To study the structure of T-finite discrete modules in general, 
we shall first prove the following 

LEMMA 5.3. Let A be a T-finite discrete module. A' the submodule of 
all a in A satisfying pa = 0. Let B be an elementary submodule of A 
containing A', and C a submodule of A such that pC is contained in B. 
Suppose w(B/pB)^w(C/B). Then pC=B, and C/B is isomorphic 
with B/pB. 

PROOF. The endomorphism c—>pc of C obviously induces a homo-
morphism cj> of C/B into B/pB. Suppose that pc (c£C) is contained 
in pB. Then pc = pb for some bin B, and c — b is contained in A', and, 
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hence, in B. Thus, c is also contained in 5 , and we see that <j> is an 
isomorphism of C/B into B/pB. I t then follows from Lemma 4.17, 
tha t w(C/B) ^w(B/pB) and, consequently, by the assumption, that 
w(C/B)=w(B/pB). 

Now, since B is elementary, so is B/pB by Lemma 4.12. Hence, by 
Lemma 4.3, B/pB&E(l)' where t=*w(E(l)')=w(B/pB). However, 
it is easy to see that no submodule of £(1)* has weight / unless it 
coincides with £ ( 1 ) ' itself. Therefore, <f>(C/B)—B/pB and <f> is an 
isomorphism of C/B onto B/pB. It then follows that pC+pB=B and, 
hence, that pC = B. 

Now, let A be any T-finite discrete module. By Lemma 4.14, the 
union of all elementary submodules in A is a submodule of A. We 
shall first study the structure of A in the case where A itself is the 
union of all elementary submodules of A. 

Let C be any bounded submodule of such a discrete module A. 
Then the maximal elementary submodule E of C has a finite index 
in C, and we can find a finite number of elements a* which generate 
C mod E. Since, by the assumption, every ai is contained in some 
elementary submodule of A, it follows from Lemma 4.14, that C is 
also contained in an elementary submodule of A. 

Now, for any elementary submodule E of A, let E* denote the sub-
module of all a in A such that pa is contained in E. Then, among all 
elementary submodules of A, we choose an E for which the weight 
w(E*/E) attains the minimum. Since E* is obviously a bounded 
module, there exists, by the above remark, an elementary submodule 
B of A containing £*.JPut 2 = A/Ef B = B/E. £*=_£* /£ is then the 
submodule of all a in A satisfying pa = 0. But, as £* is contained in 
5 , E* is also the submodule of all â in "E satisfying pa~0. Hence, by 
(4) in 4.6, £ * has the same weight as B/pB: w(E*) =>w(B/pB). Let 
B* be the submodule of all b in A such that pb is contained in B. Then, 
5 * = 5 * / £ is the submodule of all 5 in Z such that ph is contained 
i n 5 , j m d J p y t h e c h o i c e o f E ^ 
= w{B*/B). Hence, applying Lemma 5.3 to B and J5*, we see that 
pB* = B and B*/Bç*B/pB. 

Put A—A/B and Â' = B*/B. Â' is then the submodule of all â in A 
satisfying pa = 0 and A'^B*/B£ÉTï/pB. As B is elementary, B and 
B/pB are also elementary. Hence A' is an elementary module with 
pA' = 0, and it is therefore isomorphic with £(1)*, t*z0. Let a be an 
arbitrary element in A. By the remark mentioned above, there then 
exists an elementary submodule C of A containing both a and £*. 
Applying the above argument for C — C/E instead of J3 = J3/E, we 
see that there is a submodule C* of A=A/E such that pC^ — C. 
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Therefore, there also exists an element c in A such that pc^a mod E, 
and, hence, such that pc^a mod B. Thus the module A=A/B is 
divisible and, by Lemma 5.1, it is isomorphic with E( oo ) *. 

Now, since B is bounded, pmB = 0 for some w ^ O . Consider, then, 
the endomorphism a-^pma of A and denote its kernel by -4 ( m ) . As 
A/B is isomorphic with E( oo ) t and ,B is contained in A(m), the endo­
morphism induces an isomorphism pmAÇ=:E(<x>)t/K where K is a 
bounded submodule of E( oo ) t isomorphic with A (m)/J5. On the other 
hand, A/B=E( oo ) < is divisible by Lemma 5.1, and we have pmA +B 
= A. Applying Lemma 4.9 to the elementary module 5 , it then fol­
lows immediately that if a T-finite discrete module A is the union of 
its elementary submodules, A is isomorphic with a module 
E (mi, • • • , m8)/D where mi, • • * , m8 are either non-negative inte­
gers or oo and D is a suitable bounded submodule of E (mi, • • • , m8). 

5.3. Let A be as above. Among all modules E(mi, • • • , m8), 
Orgm t ^ oo, such that u4==E(mi, • • • , m8)/D with bounded Z>, we 
choose an E(mi, • • • , m8) for which the weight w(D) is minimal. We 
shall next show that w(D) is then 0, i.e. that D is a finite module. 

Suppose D be infinite. By the remark in 4.2, the bounded module D 
then contains a submodule D' isomorphic with E ( l ) . Following the 
proof of Lemma 4.8, we may assume that Wi^ • • • ^m8>0 and 
tha t D' is not contained in the direct summand E (mi, • • • , m8_i) of 
E(tni, • • • , ms). Suppose, first, that m — m8 is not oo. By the same 
argument as in the proof of Lemma 4.8, we can then see that 
E (mi, • • • , m8) has a submodule C such that C = E(tn), pm~1C = Df 

and E (mi, • • • , m s )=E(mi , • • • , ms_i) + C, though the sum is not 
necessarily direct. The intersection of E(mi, • • • , ms_i) and C is 
finite, for, otherwise, it would contain D' =pm~lC=E(l). A homo­
morphism of E(mi, • • • , m 5 )=E(mi, • • • , m8_i)+E(m8) onto 
E(mi, • • • , m 8 )=E(mi , • • • , mfi_i) + C, mapping E(mi, • • • , m8_i) 
and E(m8) isomorphically onto E (mi, • • • , m,_i) and C respectively, 
induces a homomorphism </> of E(mi, • • • , m8_i, m8 —1) onto 
E(mi, • • • , rn8)/D' whose kernel K is a finite module. Let \p denote 
the homomorphism of 

E(mi, • • • , ms_i, ms — 1) onto E(mi, • • • , m8)/D 

which is the product of <t> and the canonical homomorphism 
E(mi, • • • , m8)/I}'—»E(mi, • • • , m8)/D. The kernel D* of \[/ then 
satisfies D*/KÇ^D/D'. Since K is finite, we have, by Lemma 4.17, 
w(D*)=w(D*/K)=w(D/D')=w(D)-w(D')=:w(D)--l. As A is ob­
viously isomorphic with E (mi, • • • , m8_i, m8 — l)/J9*, this contra­
dicts the choice of D. 
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Assume, next, m8== oo so that mi = • • • =m«= oo, E (mi, • • • , w8) 
= £(oo)«. Let E' be the submodule of all a in E(oo)« satisfying 
pa = 0. Since E'£^E(1)8 and D' is a submodule of E' isomorphic with 
£(1) , it is easily seen that E ' has a basis a$, 1 ^*i^s, 0^j< oo such 
that w0^o) = 0, cooa^—a^1]-! for j > 0 and that a$ \ 0 ^ / < o o , form a 
basis of D' . As shown in the proof of Lemma 5.1, we can then find 
elements a$ in E(oo)«, l ^ i ^ s , 0 g j < o o , l g £ < o o , which include 
those a§* above and satisfy the conditions stated there. Let B be 
the submodule of £(oo)« generated by a<f, l ^ i ^ j s — l, 0 ^ j < o o , 
1 S k < oo , and C the submodule of E( oo ) « generated by a $ \ 0 rgj < oo, 
l ^ ^ < c x ) . £ ( o o ) « i s then the direct sum of B and C, and D' is the 
submodule of all a in C satisfying pa = 0. Clearly, B^-E(co)*-1, 
C—E{ oo ), and the endomorphism c—>pc of C induces an isomorphism 
of C/D' onto C=E(<x>). These isomorphisms then define an isomor­
phism <t> of £(co)« onto £(oo)«/-D' in an obvious way and we denote 
by xf/ the homomorphism of £ ( oo )« onto £ ( oo )'/D9 which is the prod­
uct of $ and the canonical homomorphism E(oo)*/£>'—»£(<*>)8/D. 
Denoting the kernel of \f/ by £>*, we have thus £(<x>)8/D^E(<x>)*/D* 
and D*~D/D'. However, it then follows from Lemma, 4.17 that 
w(D*) =w(D) —w(Df) =w(D) — 1, and this again contradicts the 
choice of D. 

We have thus proved the following. 

LEMMA 5.4. Let A be a T-finite discrete module. Suppose that A is the 
union of all elementary submodules of A. Then, there exists a module 
E(miy • • • , m s ) , 0 ^ m * ^ oo, and a finite submodule DofE(mu • • • ,m8) 
such that A is isomorphic with E (mi, • • • , m8)/D. 

5.4. We now consider an arbitrary T-finite discrete module A. Let 
C denote the union of all elementary submodules of A. By Lemma 
5.4, C=E(mi, • • • , m8)/D, O^m^rg oo, with a finite submodule D of 
£(mi, • • • , m8). As can be seen from the proof of Lemma 5.4 (or, 
directly from the fact C==£(mi, • • • , m8)/D), C has an elementary 
submodule E such that C / E = E ( oo)* for some / â O . Then, applying 
Lemma 5.2 to ^4/E and C/E, we see that A has a submodule B* 
containing E such that ^4/E is the direct sum of B*/E and C/E. By 
Lemma 2.3, B*/E is Infinite. Hence, if B*/E were not of finite rank, 
5 * would contain, by the remark in 4.2, a submodule E* such that 
E*/22=JE(1)' But, then, E* would be also elementary by Lemma 
4.13, and were not contained in C, a contradiction to the defini­
tion of C. Therefore, B*/E must be a module of finite rank. Let B' 
be the submodule of B* containing E such that B*/B' is finite and 
B'/E is divisible. As an abelian group, Br/E is then isomorphic with 
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Zy» for some Z^O. Now, since E is elementary, pnE — 0 for some 
n*z0. Put, then, B=pnBf. Considering the endomorphism b—*pnb of 
B', we see that B is isomorphic with a quotient module of B'/E 
modulo a finite submodule. Hence, as an abelian group, B is again 
isomorphic with Z ^ . Furthermore, since B'/E is divisible, it holds 
that B'=B+E, and B + C = B' + C has a finite index in ^ = 5 * + C. 
On the other hand, since B is of finite rank and E is bounded, BC\C 
— BC\E is a finite module. Therefore, the following theorem is 
proved: 

THEOREM 1. Let A be a T-finite discrete module. Then, A has sub-
modules B and C with the following properties: 

(i) both A/(B + C) and BC\C are finite modules, 
(ii) B is divisible and of finite rank, i.e., B is, as a discrete abelian 

group, isomorphic with Zl
p*for some ZâO, 

(iii) C is isomorphic with E(m\, • • • , m8)/D for some mi, • • • , m8, 
O^miS °°, and for a finite submodule D of E (mi, • • • , m8). 

We notice that the structure of a discrete module like B was studied 
in §3. 

We now consider the uniqueness of submodules given in the theo­
rem. Let B and C be any submodules of A having the properties 
(i), (ii), (iii) above ; B and C need not be those which were considered 
in the above proof of Theorem 1. Then, A/C is of finite rank and 
(B + C)/C is divisible. Take any elementary submodule E of A. By 
Lemma 4.12, (E + C)/C is elementary and, hence, is bounded. But, as 
A/C is of finite rank, (E + Q/C is finite. Since (E + Q/C is also 
regular, we have (E + Q/C = 0, i.e. E + C=C. Thus, every ele­
mentary submodule of A is contained in C. On the other hand, it 
follows easily from C=E(m\, • • • , ms)/D that C is the union of its 
elementary submodules. Therefore, C is also the union of all elemen­
tary submodules of A and is thus uniquely determined by A. 

Now, let -4* be any submodule with a finite index in A. By a sim­
ilar argument as above, we see that every elementary submodule of 
A is contained in A*. Hence, C is also a submodule of A*. On the 
other hand, if the index of -4* in A is pn, pnA is contained in A*. 
Hence B—pnB is contained in ^4*, and so is B + C. Thus B + C is the 
minimal submodule of A having a finite index in A and is uniquely 
characterized by this property. 

A simple example shows that the module B satisfying (i), (ii), (iii) 
together with C is not unique for given A. However, the rank / of 
B is uniquely determined by A, for it is equal to the rank of (B + C)/C. 

Finally, for any integer i §: 0, let A(i) be the submodule of all a in A 
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satisfying £*a = 0. Since A/C is of finite rank, Awr\C has a finite in­
dex in A^K Hence, by a similar argument as in 4.6, we see from 
fê£(mi, • • • , ms)/D that 

8 

w(A(i)) = 2^ min (ntj, i), i ^ 0. 

Therefore, nonzero m/s in mi, - • • , m8 are uniquely determined by 
4̂ and they give us a set of invariants of the module A. Clearly, the 

module E(m\, • • • , m8) is then also uniquely determined by A, and 
so is the sum m = ]C?~i mj- Here, m is meant to be <*> if one of mj 
is oo. 

We have thus obtained the following corollary to Theorem 1. 

COROLLARY. Let B and C be any submodules of a T-finite discrete 
module A, having the properties (i), (ii), (iii) stated in Thor em 1. Then, 
the modules C, B + C and E(mi, • • • , m8) are uniquely determined by 
A with these properties, and so are the rank I of the module B and the 
sum m= X)*~i m3-

In the following, we shall denote the invariants / and m of A by 
1(A) and m(A) respectively. 1(A) is a non-negative integer and m(A) 
is either a non-negative integer or oo. As can be seen easily, m (A) is 
the supremum of the weights w(D) of bounded submodules D in A. 
In particular, if A itself is bounded, m(A) =w(A). 

We now apply Lemma 3.1 to the submodule B in Theorem 1. B is 
then the direct sum of a regular submodule B' and a submodule B" 
such tha t Û # 5 " = 0 for some u' and v'. Put M=B' + C. Since B' 
and C are both regular, so is M. Furthermore, since coJ,'jB" = 0 and 
A/(B + C) is finite, u>l(A/M) = 0 for some w and v. I t follows that 
coĴ 4 — M, and we see, as in the proof of Lemma 3.1, that M is the 
unique maximal regular submodule of A in which every regular sub-
module of A is contained.8 Thus the following theorem is proved: 

THEOREM 2. Let M be the unique maximal regular submodule of a 
T-finite discrete module A. Then, M is the sum of a divisible regular sub-
module B' of finite rank and the characteristic submodule C of A given 
in Theorem 1. A/M is a module of finite rank and oo9

u(A/M)=Q for 
some u à 0 and v^Q, 

5.5. We now consider a special kind of T-finite discrete modules. 

LEMMA 5.5. For a Y-finite discrete module A, the following conditions 
are mutually equivalent: 

8 The existence of such a unique maximal regular submodule of A was already 
noticed in 2.2. 
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(i) the invariant m(A) is finite, 
(ii) the maximal regular submodule M o f A is strictly Yl-finite, 
(iii) if An denotes the maximal divisible submodule of An (n*zQ), 

the rank of An has a fixed upper bound for all n*zO. 

PROOF. Let M=B' + C as in the above. By Lemma 3.4, B' is 
strictly T-finite. Hence M is strictly T-finite if and only if C is so. 
But it is easy to see that C=E(mi, • • • , m8)/D is strictly T-finite if 
and only if m(A) = X)?=i mt '1S finite, (i) and (ii) are therefore equiva­
lent. 

Now, by Lemma 2.2, (A/M)n=An/Mn. If M is strictly T-finite, 
Mn is a finite module and it follows from the above isomorphism that 
the rank of An

f is at most equal to the rank of (A/ M)n- The rank of 
An is, hence, not greater than the rank of A/M and we see that (ii) 
implies (iii). On the other hand, if m (A) is infinite, then at least one 
of mi, • • • , m s in E(mi, • • • , m8)/D is infinite and the rank of 
An'r\C is a t least pn, as can be seen readily from the definition of 
£(oo). Therefore (iii) implies (i), and the lemma is proved. 

Now, assume that m(A) is finite. C is then elementary; in fact, it is 
the maximal elementary submodule of A, having the weight w(C) 
= m(A). Therefore, pmC = 0 for m = m(A). On the other hand, as 
A/(B + C) is finite, pnA is contained in B + C for all sufficiently large 
n*tO. Hence pm+nA is a submodule of pmB+pmC = pmB. However, 
as B is divisible, pmB=B=pm+nB. Therefore, pm+nA =B, and it fol­
lows tha t B is the intersection of all pnA, n^O, and is the unique 
maximal divisible submodule of A. 

We summarize our results in the following 

THEOREM 3. Let A be a Y-finite discrete module such that the invariant 
m(A) is finite. Then the submodules B and C in Theorem 1 are both 
uniquely determined by A; B is the unique maximal divisible submodule 
of A and C is the unique maximal elementary submodule of A. The 
invariant 1(A) is the rank of B as well as that of the maximal divisible 
submodule of A/C, and the invariant m(A) is the weight of C as well as 
that of the bounded T-finite discrete module A/B. Furthermore, the 
maximal regular submodule M of A is strictly Y-finite. 

We consider next a strictly F-finite module A. The rank of the 
module An

f in Lemma 5.5 is then 0, and we know that m(A) is finite. 
By Lemma 3.4, the maximal divisible submodule B of A is regular. 
Hence B + C is also regular and it coincides with the maximal regular 
submodule M. Now, by Lemma 2.3, we have 

c(n; A) = c(n; A/M) + c(n\ M), » ^ 0 , 
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Let B' and C be discrete modules such that B'^3 and C'^C, and 
let A' be the direct sum of B' and C'. I t is clear that there is a homo-
morphism <f> of A' onto M—B + C, mapping Bf and C' isomorphically 
onto B and C, respectively. The kernel D' of <j> is then a finite module 
isomorphic with BC\C. Since A''=B'' + C' is regular and œn(A')=A' 
for every w^O, oo^iD')/0)^(0) has the same finite order as D'. Hence 
(Af/Df)n=o)n1(Df)/Df also has the same order as An = co^1(0), and 
we have c(n; M)=c(n; A'/D')=c(n; Af)=c(n; Bf)+c(n; C) = c(n;B) 
+c(n; C), for all n^O. Therefore, 

c(n; A) = c(n\ A/M) + c(n\ B) + c(n; C), n ^ 0. 

However, as A/M is finite, c(n; A/M) is constant for all sufficiently 
large n. Hence, by Lemmas 3.5, 4.10, we immediately obtain the 
following 

THEOREM 4. Let A be a strictly Y-finite discrete module. Then the 
invariant m (A) is finite and B + C=Mfor the submodules B, C and M 
in Theorem 3. Furthermore, there exists a non-negative integer no such 
that, for n^no, the characteristic f unction of A is given by 

c(n; A) = l(A)n + m(A)pn + u, 

with a suitable integer u independent of n. 

Now, for any function of the form ƒ (n) = ln+mpn+u, the coefficients 
/, m and u &re uniquely determined b y / . Hence, if A is a strictly In­
finite discrete module, the invariants 1(A) and m(A) are uniquely 
determined from the characteristic function c(n; A) of A by the 
above formula. On the other hand, such an A is bounded if and only 
if 1(A) = 0 and it is of finite rank if and only if m(A) = 0 . Therefore, 
we can see from the characteristic function of A whether or not A is 
bounded or of finite rank. 

5.6. Now, let Op be, as before, the additive group of £-adic integers 
and let F(<x>) denote the module il^fT, Op) defined in 1.4. Since Op 

is a compact abelian group dual to the discrete abelian group Zp<», 
F(oo) = ikf2(r, Op) is a compact module in the sense of 2.2 and is 
dual to the discrete module E(<=o) = Mi(T, Zp«). More generally, for 
any mi, • • • , ms, O ^ m ^ <*>, we denote by Y(m\, • * • , ms) the direct 
sum of Y (mi), i = l, • • • , s. Clearly, Y(m\, • • • , ms) is a regular 
T-finite compact module dual to the regular T-finite discrete module 
E(mi, • • • , m9). 

By the duality between discrete and compact modules, we can then 
immediately obtain theorems on T-finite compact modules which cor­
respond to the above results on T-finite discrete modules. We state 
here only some of them. 
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THEOREM 5. Let X be a T-finite compact module. Then, X has sub-
modules U and V with the following properties: 

(i) both X/(U+ V) and UC\ V are finite modules, 
(ii) Xj U is torsion-free and of finite rank, i.e., X/ U is, as a compact 

abelian group, isomorphic with 0\for some 1^0, 
(iii) X/V is isomorphic with a submodule of finite index in 

Y (mi, • • • , m8) for some mi, • • • , ms, O ^ w ^ o o . 

COROLLARY. Let U and V be any submodules of a T-finite compact 
module A with the properties (i), (ii), (iii) in the above theorem. Then, the 
modules V, UCW and Y(m\, • • • , m8) are uniquely determined by X, 
and so are the tank I of X/U and the sum m = XX-1 mi-

Thus, we have again invariants l = l(X) and m = m(X) for any 
T-finite compact module X. Clearly, if A is a discrete module dual to 
X, then l(X) —1(A), m(X) =m(A). We also notice that the structure 
of a module like X/U was studied in §3. 

THEOREM 6. Let X be a T-finite compact module such that m(X) is 
finite. Then the submodules U and V in Theorem 5 are both uniquely 
determined by X; U is the torsion submodule of X and V is the unique 
minimal submodule of X such that X/ V is elementary. The invariant 
l(X) is the rank of X/ U as well as that of the factor torsion module of V, 
and the invariant m(X) is the weight of X/V as well as that of the 
bounded T-finite compact module U. Furthermore, if S is the unique 
minimal submodule of X such that X/S is regular, then X/S is also 
strictly T-finite. 

6. Unramified extensions. 6.1. Let O be the field of all algebraic 
numbers. In what follows, we shall always consider the structure of 
various algebraic number fields, i.e. the structure of various subfields 
of fl. So, if there is no risk of misunderstanding, we shall call those 
algebraic number fields simply fields. By the definition, our fields are 
algebraic extensions of the field of rational numbers Q, but they need 
not be finite extensions of Q; in other words, our fields are not neces­
sarily finite algebraic number fields. 

If both E and F are such fields and if £ is a Galois extension of F, 
we denote the Galois group of the extension E/F by G(E/F). 
G(E/F) is a totally disconnected compact group in Krull's topology. 
For any prime divisor of E, archimedean or non-archimedean, the 
decomposition group and the inertia group of the prime divisor for 
the extension E/F can be defined just as in the case of finite algebraic 
number fields.9 They are closed subgroups of G(E/F) and have sim-

9 For an archimedean prime divisor, the inertia group is defined to be the same as 
the decomposition group. 
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ilar properties as those defined for finite algebraic number fields. 
Let p be a prime divisor of 0 and T the inertia group of p for the 

extension 12/Q. Let K and L be fields such that KQL. Then TC\G(Q,/K) 
and Tr\G{Q>/L) are the inertia groups of p for ti/K and 12/L, respec­
tively, and the latter is a subgroup of the former. Now, the prime 
divisor p is said to be ramified for the extension L/K if TC\G(Q/K) 
^ Tr\G(Q/L), and it is said to be unramified for L/K if mG(Q/K) 
= m G ( Q / L ) . Obviously, p is unramified if and only if Tr\G(ti/K) 
is contained in G(12/L). 

A prime divisor p' of X (or a prime divisor p" of L) is said to be 
unramified for L/K if and only if every extension p of p' (of p") on 12 
is unramified for L/K. Otherwise p'(p") is said to be ramified for 
L/K. If L/K is a Galois extension and T is the inertia group, for 
12/<2, of an extension p of p" on 12, then the inertia group of p" for the 
extension L/K is given by the image of TC\G(Q/K) under the 
canonical homomorphism G(Q/K) -» G(L/K) = G(Q/K)/G(Q/L). 
Hence, p" is unramified for L/K if and only if the inertia group of p" 
for L/K is trivial. We also notice that our definition of ramified or 
unramified prime divisors coincides with the usual one when both 
L and K are finite algebraic number fields. 

Now, an extension L/K is called an unramified extension if and 
only if every prime divisor of K, or, equivalently, every prime divisor 
of L, is unramified for the extension L/K. The following properties of 
unramified extensions are immediate consequences of the definition: 
if L/K is unramified and L'/K is conjugate with L/K in 12, then 
V/K is also unramified; if FCZKC.L, then L/F is unramified if and 
only if both L/K and K/F are unramified; if FQE, F<ZK and E/F 
is unramified, then the composite L — EK of E and K in 12 is unrami­
fied over K; if L/K is the composite, in 12, of a family of unramified 
extensions La/K, then L/K is also unramified. From these, it follows 
in particular that every field K has a unique maximal unramified 
extension L in 12 which contains every unramified extension of K in 
£2; L is a Galois extension of K. Similarly, there also exists a unique 
maximal unramified abelian extension A of K in 12 which contains 
every unramified abelian extension of K in 12. If K is a finite algebraic 
number field, A is nothing but the Hilbert's class field over K, and 
it is well-known that A/K is a finite extension with degree equal to 
the class number of K. If the degree of K/Q is infinite, A/K is not 
necessarily a finite extension,10 but we shall still call A the Hilbert's 
class field over K. 

10 Cf. 7.7 below. 
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6.2. We shall next show that every unramified extension can be 
obtained by composing, in a suitable manner, finite unramified exten­
sions of finite algebraic number fields. 

LEMMA 6.1. Given any finite unramified extension L/K, there exist 
finite algebraic number fields E and F such that 

(i) E is an unramified extension of F, and 
(ii) FCK,ECLandL = EK. 

If L/K is furthermore a Galois extension, then the fields E and F can be 
chosen so that E/F is also a Galois extension and its Galois group is iso­
morphic with the Galois group of L/K. 

PROOF. Let 5 be the space of all nonempty closed subsets of the 
compact group G(Q/Q). We may regard G(Q/Q) as a subspace of 5 
by identifying each element of G(Q/Q) with the subset consisting of 
that single element. Now, as a separable compact topological group, 
G(Q,/Q) can be topologized by a metric p(a, 6)(a, &£G(Q/(?)), and> 
as is known, this metric can be extended to a metricp(A, B) (A,BÇE.S) 
on 5 so that 5 becomes a compact metric space.11 Define a function 
p\A, B) on SX S by 

p'(Ay B) = inf p(a, 6), a G A, b G B. 

Then, pf{A, B) is a non-negative continuous function on 5 X 5 and 
p'(A, B)>0 if and only if A and B are disjoint. 

In proving the lemma, we may of course assume that both K 
and L are infinite extensions of Q and that KT^L. Since L/K is a 
finite extension, there exist finite algebraic number fields Ko and L0 

such tha t KoCK, L0CL, K0CLQ, L = KL0 and [L0: K0] = [L: K]. 
We then choose a sequence of fields, X o C ^ i C - ^ C • • • , so that 
each Kn is a finite extension of Q and that K is the union of all Kn. 
Put Ln = KnLo for n^l. Then we have again a sequence of fields, 
L o C ^ i C ^ C ' • • » such that each Ln is finite over Q, that L is the 
union of all Ln and that [Ln: Kn] — [L: K] for every n^O. Put 

G = G(0/iC), Gn = G(ti/Kn), n = 0, 1, 2, • • • 

H = G(0/L), # „ = G(0/ in) , » = 0, 1, 2, • • • . 

As K is the union of all Kni G is the intersection of all Gni and as L is 
the union of all Lny H is the intersection of all Hn. Furthermore, since 
L = KLn, H=GC\Hn for every ^ ^ 0 . Let C be the set-theoretical 
complement of H in G. As K^L and [G: H] = [L: K] is finite, C is 

11 Cf. D. Montgomery and L. Zippin, Topological transformation groups, New-
York, Interscience Publishers, 1955, p. 17. 
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a nonempty compact subset of G(Q/Q). From the fact that [Gn: Hn] 
= [Ln: Kn] = [L: K] = [G: H], it also follows easily that Gn is the 
disjoint union of Hn and CHn. 

Now, let p / , • • • , p/ be all the prime divisors of the finite algebraic 
number field L0 which are ramified for the extension Lo/K0. For each 
j (1 ^-j^-s), let Tj be the inertia group, for Ü/Q, of an extension py of 
p/ on £2, and let <j>j be a continuous function on G(Q/Q) X 5 defined by 

*,(<r, 4 ) = p'Gr^V-1, Cil), er G G(Q/Ö), i G 5 . 

By the definition of C, we have CH = C Hence aTjcr"1 P\ Cff 
= {<jTj<j~ir\G)r\C. But, since L/ i£ is unramified and crTja"1 is the 
inertia group of the prime divisor pj for 0/Q, <TTJ(Ï~1P\G is contained 
in Ü and the intersection (<rTj<r~~ir\G)r\C is empty. Therefore, 
<£y(cr, ü ) > 0 for every (7 in G(Q/Q) and for every j , l^jSs. On the 
other hand, since H is the intersection of all Hn, H is the limit of the 
sequence, iJ0, Hi, Hi, • • • , in 5. Using the compactness of G(Q/Q), 
it then follows that there exists an integer n0 â 0 such that <£y(<r, HWo) 
> 0 for every <r in G(Q/Q) and for every j , l^j^s. But, then, 
aTjcr~ir\CHno is empty by the definition of <£y and, as Gwo is the dis­
joint union of HnQ and CHno, (xTj(T~ir\Gn^ must be contained in HMo. 
Thus, for every a in G(Sl/Q) and for every j , 1 rgj ^ 5, the prime divisor 
pj of Q is unramified for the extension Lno/Kno. 

Now, let p be any prime divisor of 0 different from pj, crGG^Q/Q), 
1 g j :g s. The restriction p' of p on Lo is then different from pi', • • •, p/ 
and it is unramified for Lo/Ko. p is therefore unramified for Lo/Ko and, 
hence, also for LnjKnr This, combined with the above, shows tha t 
LnQ/Kno is an unramified extension. Putting F = Kno, JS = Lno, the 
conditions (i), (ii) of the lemma are then satisfied. 

If L/K is a Galois extension, we can choose K0 and L0 in the above 
so that Lo/Ko is also a Galois extension. Every Ln/Kn is then also a 
Galois extension and its Galois group G(Ln/Kn) is canonically iso­
morphic with G(L/K). Thus, in particular, G(E/F) is isomorphic 
with G(L/K) and the lemma is completely proved. 

THEOREM 7. An extension L/K (KC.LC.Q,) is an unramified exten­
sion if and only if there exists a family of extensions {La/Ka} of finite 
algebraic number fields Ka and La such that 

(i) every La/Ka is an unramified extension, and that 
(ii) K is the composite of all Ka and L is the composite of all La. 

PROOF. Suppose first that there exists such a family of extensions 
{La/Ka}. Put La = KLa. Since La/Ka is unramified, LI/K is also 
unramified. Since L is the composite of all L« , L/K is again unrami­
fied. 
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Suppose, conversely, that L/K is unramified. Let {Li/K} be a 
family of finite extensions such that L is the composite of all L*, and 
let {KJ/Q} be a family of finite extensions such that K is the com­
posite of all Kj. By Lemma 6.1, there exist, for each i, finite algebraic 
number fields Ei and Fi such that Ei/Fi is unramified and Li = KEit 

Put Kitj = FiKjy Li,j = EiKj. Then the family of extensions {Litj/Ki^} 
has the properties (i), (ii) stated in the theorem. 

COROLLARY. Let K be a field and {Ka} a family of finite algebraic 
number fields such that K is the union of all Ka. Then the maximal un­
ramified extension of K in Q is the composite of all finite unramified 
extensions of all fields Ka in the family. 

We next consider abelian extensions. If the extension L/K in 
Lemma 6.1 is abelian, we may take also an abelian extension for 
E/F in the lemma. By a similar argument as in the proof of Theorem 
7, we can then immediately obtain the following 

THEOREM 8. An extension L/K (KC.LC.&) is an unramified abelian 
extension if and only if there exists a family of extensions {La/Ka} of 
finite algebraic number fields Ka and La such that 

(i) every La/Ka is an unramified abelian extension, and that 
(ii) K is the composite of all Ka and L is the composite of all La. 

COROLLARY. Let K be a field and {Ka} a family of finite algebraic 
number fields such that K is the union of all Ka- For each a, let La denote 
the Hilbert's class field over Ka. Then the Hilbert's class field over K is 
the composite of all such La. 

6.3. As before, let p denote a prime number. An extension L/K is 
called a ^-extension if L/K is a Galois extension and the Galois 
group G(L/K) is a ^-primary compact group. Every field K has a 
unique maximal (abelian) ^-extension in 0 which contains every 
(abelian) ^-extension of K in £2. By the properties of unramified ex­
tensions stated in 6.1, K has also a unique maximal unramified p-
extension and a unique maximal unramified abelian ^-extension in 
12. The latter is nothing but the £-part of the Hilber^s class field over 
K, and, if K/Q is finite, its degree over K is equal to the highest 
power of p dividing the class number of K. 

Using again Lemma 6.1, we get immediately such results on un­
ramified (abelian) ^-extensions which are similar to those on unrami­
fied abelian extensions given in Theorem 8 and its corollary. We state 
here only the following 

THEOREM 9. Let K be a field and {Ka} a family of finite algebraic 
number fields such that K is the union of all Ka- For each a, let La denote 
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the maximal unramified abelian p-extension of Ka in Q. Then the maxi­
mal unramified abelian p-extension of K in Û is the composite of all 
such La. 

7. T-extensions. 7.1. Let p be a prime number and let T be, as in 
previous sections, a fixed ^-primary compact abelian group isomor­
phic with the additive group of £-adic integers. An extension L of a 
field K is called a T-extension of K if L/K is a Galois extension and if 
the Galois group GÇL/K) is isomorphic with I \ 

Let L/K be such a T-extension and let, for simplicity, G(L/K) be 
identified with I \ For each n*tO, we denote by Kn the intermediate 
field of K and L such that G{L/Kn) = Tn. We have then a sequence of 
fields: 

K = KoC^CKtC- - CL, 

such tha t Kn is a cyclic extension of degree pn over if and L is the 
union of all Kny n^O. 

LEMMA 7.1. Let K be a finite algebraic number field and L a Y-exten­
sion of K. Then a prime divisor p of K is ramified for L/K only when 
p is a non-archimedean prime divisor dividing the rational prime p. 

PROOF. Assume that p is ramified for L/K and denote by T the 
inertia group of p for the abelian extension L/K. Since T is a non-
trivial closed subgroup of F, T must be equal to Tn for some n^O. 
Hence T is an infinite group and it follows immediately that p is 
non-archimedean. Let p' be an extension of p on Kn. For any integer 
m^n, p' is then completely ramified for the extension Km/Kn and its 
ramification is pm~n. Therefore, if p and, hence, p' did not divide p, 
we would have 

N(p') s 1 mod pm~n, 

where iV(p') denotes the absolute norm of the prime divisor p'. But, 
since m can be taken arbitrarily large, this is obviously a contradic­
tion, and the lemma is proved. 

From the lemma, it follows in particular that there exist only a 
finite number of prime divisors of K which are ramified for L/K. 
On the other hand, since an unramified abelian extension of K is 
always a finite extension, there exists at least one prime divisor which 
is ramified for L/K. 

LEMMA 7.2. Let K and L be as in Lemma 7.1 and let s be the number 
of prime divisors of K which are ramified for L/K. Furthermore, let V 
be an unramified p-extension of L such that L'/K is an abelian exten-
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sion. Then the Galois group G{L'/K) is a p-primary compact abelian 
group of finite rank and the rank of the factor torsion group of G{L'/K) 
is at most s. 

PROOF. Put G = G(L'/K) and N = G(L'/L). It is clear that G is a 
^-primary compact group, for both N and G/N = G(L/K)=T are 
such groups. Let pi, • • • , ps be all the prime divisors of K which are 
ramified for L/K and let Ti, • • • , Ts denote the inertia groups of 
pi, • • • , ps, respectively, for the abelian extension L'/K. Since L'/L 
is an unramified extension, the intersection T{C\N is 1, and we have 
Ti=TiN/N. Ti is thus isomorphic with a nontrivial subgroup of 
T = G/N and, hence, also isomorphic with T itself. Let T be the 
product of the subgroups 7\, • • • , Ts in G and E the intermediate 
field of K and L' such that T = G(L'/E). As L' /L is an unramified ex­
tension, no prime divisor of Ky different from pi, • • • , ps, is ramified 
for L'/K. It then follows from the definition of T that E/K is an 
unramified abelian extension. Therefore, E/K is a finite extension 
and G/T is a finite group. From this and from the fact that T is the 
product of 7\, • • • , T8, each isomorphic with T, the lemma follows 
immediately by a simple group-theoretical consideration. 

We notice that the rank of the factor torsion group of G(L'/L) is 
at most 5 — 1. Hence, if s = 1, G(L'/L) is a finite group. 

7.2. As before, let L be a T-extension of a finite algebraic number 
field K. Let M be an unramified abelian ^-extension of L such that 
M/K is also a Galois extension. We put G = G(M/K), X = G(M/L). 
Then X is a closed normal subgroup of G and G/X = G(L/K) =T . As 
X is a ^-primary compact abelian group, G is such a compact group 
as we considered in 2.5, and X is thus made into a compact T-module 
in a natural way. We shall next show that this compact T-mpdule X 
is T-finite. 

For each wj^O, put Gn = G(M/Kn). Then X is contained in Gn and 
G n /X = r n . By 2.5, we have only to prove that, if [Gn, Gn] is the 
topological commutator group of Gw, then Gn/[Gni Gn] has a finite 
rank for every n ^ 0. Let Ln denote the intermediate field of K and M 
such that G(M/Ln) = [Gw, Gn]. By the definition of [Gw, Gn], Ln is the 
maximal abelian extension of Kn contained in M. Hence, in particu­
lar, L is contained in Ln. On the other hand, as G(L/Kn) = T w ^ r , 
L/Kn is a T-extension. Therefore, we may apply Lemma 7.2 to i£n, 
L and Lw, and we see that G{Ln/Kn) =Gn/\Gny Gn] has a finite rank. 
Our assertion is thus proved. 

Now, let pi, • • • , ps be all the prime divisors of K which are rami­
fied for L/K. The inertia groups of pi, • • • , ps for L/K are then non-
trivial subgroups of r and we can find a suitable integer Wo è 0 such 
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tha t rwo is contained in all these inertia groups. Then a prime divisor 
of jK"no, which is ramified for L/Kno, is not decomposed for any ex­
tension Kn/Kno, nèzno, and the number of the prime divisors of Kn 

which are ramified for L/Kn remains the same for all Kn, n^no. 
Thus, it follows from Lemma 7.2 that the rank of the factor torsion 
group of Gn/[Gn, Gn] has a fixed upper bound for all n^O. But, since 
[Gn, Gn] = œnX = Xn

<, this implies that the rank of the factor torsion 
module of X/X* also has a fixed upper bound for all n^O. Now, 
let A be a discrete T-module dual to the compact T-module X and let 
An (n^Q) be the submodules of A as defined before. Then the duality 
between A and X implies a duality between An and X/X%, and also 
a duality between the maximal divisible submodule of An and the 
factor torsion module of X/X%. Hence, by above, the maximal divisi­
ble submodule of An has a fixed upper bound for all n^O. I t then 
follows from Lemma 5.5 that the invariant m(A) of A is finite, and, 
as the invariant m{X) of X is equal to m(A), the following theorem is 
proved : 

THEOREM 10. Let L be a Y-extension of a finite algebraic number field 
K and M an unratified abelian p-extension of L such that M/K is 
also a Galois extension. Then the Galois group G(M/L) is a Y-finite 
compact Y-module with respect to Y-=G{L/K), and the invariant m(X) 
of the compact Y-module X = G(M/L) is finite. The structure of G(M/L) 
as a p-primary compact abelian group with operator domain G(L/K) 
is thus given by Theorem 6. 

7.3. Let K and L be as above. We now take as M the maximal 
unramified abelian ^-extension of L in £2, i.e. the £-part of the Hu­
bert 's class field over L; M/K is then obviously a Galois extension. 
By Theorem 10, the Galois group G(M/L) is a T-finite compact 
T-module with respect to Y = G(L/K) and we denote the invariants 
l(X) and m{X) of the Y-module X = G(M/L) by 1{L/K) and m(L/K), 
respectively. By the above theorem, not only l(L/K) but also m(L/K) 
are non-negative integers, and they give us information on the struc­
ture of the Galois group G(M/L) of the maximal unramified abelian 
^-extension M over L. For instance, G(M/L) is of bounded order if 
and only if l(L/K) — 0 and it is of finite rank if and only if m(L/K) = 0. 

Actually, l(L/K) depends only upon L (and M)y but not upon K, 
for it is an invariant of the Galois group G(M/L) considered merely 
as an abelian group. On the other hand, the invariant m{L/K) is 
defined by means of the T-structure of G(M/L) and, hence, essen­
tially depends upon the ground field K. In fact, if we consider the 
F-extension L/Kn (n^O) instead of L/K, then we see easily that 
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m{L/Kn) = pnm(L/K). 

Now, let K' be any finite extension of K and V the composite of 
K' and L in ti:L'=KfL. Then K'C\L = Kn for some n^O and 
G(L'/K')C*G(L/Kn)^T. Hence i ' / i T is also a T-extension. If I f is, 
as before, the maximal unramified abelian ^-extension of L in 0, 
the composite MV of M and Z/ in 0 is contained in the maximal 
unramified abelian ^-extension M' of L' in 0, and G(ML'/L') is a 
factor group of G{Mf/Lr). On the other hand, G(ML'/L') is canon-
ically isomorphic with G(M/MC\Lf) which is a subgroup of finite 
index [MPiL'iL] in G(M/L). Thus the Galois group G{M/L) is, 
up to a finite factor group, isomorphic with a factor group of the 
Galois group G(M'/L'), and this is so even when both groups are 
considered as modules over the same operator domain T = G(L'/K') 
= G(L/Kn). It then follows immediately that 

l(L/Kn) S KL'/K'), m(L/Kn) g m{V/Kf), 

or, by the above, that 

l(L/K) g KL'/K1), m(L/K) S p-nm{L'/'K'). 

7.4. We shall next give another arithmetic characterization of the 
invariants l(L/K) and m(L/K). Let Kf L and M be as in 7.3 and 
put G = G(M/K), X = G{M/L), T = G/X = G(L/K)f Gn = G(L/Kn), 
n^O. As in 7.2, we choose an integer n0 such that, for any w^w0, the 
field Kn has the same number of prime divisors which are ramified 
for L/Kn. We then denote by pi, • • • , ps all the prime divisors of 
Kno which are ramified for L/KnQ. Let pi* (1 ^i^s) be an extension of 
pi on M and 7\- the inertia group of pi* for the extension M/Kno. 
Since M/L is unramified, TiC\X = 1, and since pi is completely rami­
fied for Kn/Kno for any n^tio, TiX = Gno. Hence 77 is naturally iso­
morphic with TnQ = GnQ/X and it contains an element Vi such that 
the coset of <?i mod X is the element 7 ^ of rn o . Put 0* = <T\ and o\- = <7#t-, 
1 rgirgs, with Xi in X. For any / ^ 0 , we have then 

where v = vno+t,n0 is defined as (3) in 3.2. 
We now fix an integer n^no and put G' = Gn/[Gn, Gn] =G(Ln/Kn) 

and X'=X/[Gn, Gn]=G(Ln/L), where Ln denotes, as before, the 
maximal abelian extension of Kn contained in ikf. Let p/ (1 ^i^s) be 
the unique extension of pi on Kn and let 77 denote the inertia group 
of p/ for the abelian extension Ln/Kn. Since the inertia group of p* 
for the extension M/Kn is TiC\Gn—Ti, where t — n — n^ 77 is the 
image of T\ under the canonical homomorphism Gw—>G' and, hence, 
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is the closure of the cyclic subgroup of Gf generated by the coset of 
a\ mod [Gn, Gn\ On the other hand, as Gn=TiX, G' is the direct 
product of 77 and X' : G' — 77 XX'. Therefore, if we denote by V the 
product of the subgroups 77 , • • • , 77 in G' and if we put 

T = Tl X F' , F ' C X', 

it follows from (5) that F ' is the closure of the subgroup of G' gener­
ated by the cosets of x\ mod [Gn, Gn] for 1 Si^*s. 

Now, let En be the intermediate field of Kn and Ln such that 
G(Ln/En) = Tf. From the definition of T', it follows that En is the 
maximal unramified extension of Kn contained in Lny and, hence, is 
the maximal unramified abelian extension of Kn contained in M. 
As M was the maximal unramified abelian ^-extension of L in Q, 
it is easy to see from Theorem 9 that En is the maximal unramified 
abelian ^-extension of Kn in fi, i.e., the £-part of the Hubert 's class 
field over Kn. En/Kn is therefore a finite extension and the degree 
[En : Kn ] is equal to the highest power of p dividing the class number 
of Kn. By the above, G(EJKn) = G'/TSÈX'/ Y'. Let Yn be the closure 
of the subgroup of X generated by [Gn, Gn] and a£, l^i^s, where 
v = vn,n0' Then, F ; = Yn/[Gn, Gn] and we have G(En/Kn)=X/Yn. 

We now consider the group Yn for every n è ^o. For simplicity, put 
F = Fno. If we use the additive notation for the group X, Yn is the 
closure of the subgroup of X generated by X„= [Gni Gn] and vn,n0%i, 
l^igts. As X%=o)nX = vninoü)noX = vntn0X%0 and p„0iWoffi = #<f we then 
see that Yn = vntnQY1 and the isomorphism G{En/Kn)=X/Yn im­
mediately implies that 

[En:Kn] = [X:Vn,n0Y], 

for any n ^ no. 
7.5. We shall next compute the group index on the right hand side 

of the above equality. As in Theorem 6, let V be the minimal sub-
module of X such that X = X/ V is elementary. V is then a module 
of finite rank, and if we denote by W the finite torsion submodule of 
F, V= V/W is a torsion-free compact module of finite rank l = l(X). 
Therefore, if n^ is large enough, then, by Lemma 3.3, 

(6) [ F : vn,noV] = p«n-nQ)} 

for any n^n0. For large wo, we also have that o)nQW=0 and vninoW 
= ptW with t = n — no. In the following, we shall assume, as we can, 
that no is chosen so large that all these conditions are satisfied, to­
gether with what is mentioned at the beginning of 7.4. 

Now, we have 
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[X: vY] - [X: vX][vX: vY], V = vn,no, 

and 

[X: vX] = [X: vX + V][vX + V: vX] 

= [X:vX][V:vXr\V]. 

Let x be an element of X such that vx is contained in V. Then conx 
= coWô w,nox is also in V. But, as X = X/V is regular and X„ = 0, x 
itself must be in V. Therefore vXCW—vV, and it follows that 

[X:vX] = [X:vX][V:vV]. 

Now, we can see from the proof of Lemma 3.3 that vv = 0, Â £ V, im­
plies v = 0.12 Hence, by a similar argument as above, we obtain that 
vVr\Wj=vW and [V:vV]=[7:vV][W:vW]. On the other hand, 
since X is a regular module and XWo = 0, the endomorphism 
of X is one-one. Therefore, using con=œnovntnof we also have 

[X: vX] = [coW0X: cowX] = [X: X*][X: X*no]~K 

Thus, we obtain 

[X: vX] = [X: xt][X: X^MV: v7][W: vW], 

We next compute [vX: vY]. As is readily seen, 

[vX:vY] = [X: Y][X°: F 0]- 1 , 

where -X"0 is the submodule of all x in X satisfying vx = 0 and F° 
= FHI" 0 . By the above argument, we know that X° is contained in 
W. However, as W is a finite module, vW~ptW=Q whenever 
t = n — no is sufficiently large. Hence, there exists an integer wi^^o 
such that , if n^nu then vW=0, X°=W, F ° = F f W and, conse­
quently, [vX:vY]=[X: Y][W: YC\W]-1. 

Putting all these together, we then see that, for any n<£tii, 

[X: vn,noY] = MX: xt][7: vn,nJl 

with an integer u independent of n. Here the factor [V: Vn,n0V] on the 
right hand side is given by (6), and the other factor [X: X*] is a 
power of p whose exponent is given by 

c(n; X) = m(X)pn
y 

for "X — X/V is an elementary compact T-module of weight w(X) 

12 The endomorphism Ü—>vV of V is the product of the endomorphism v—>p'v and 
an automorphism of V, 
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= m(X). I t then follows immediately that, for any n^ni, [En: Kn] 
= [X: vn,n0Y] is a power of p whose exponent is equal to 

l{X)n + m(X)Pn + u', 

where uf is an integer independent of n. 
Changing the notation slightly, we can now state our result as 

follows : 

THEOREM 11. Let K be a finite algebraic number field and L a T-
extension of K. For each n ^ 0, let Kn be the intermediate field of K and 
L with degree pn over K, and let pen be the highest power of p dividing 
the class number of Kn. Then} there exist an integer no è 0 and an integer 
c such that, for any n ^ no, 

en = In + mpn + c, 

where l = l(L/K) and m — m(L/K) are the invariants of L/K as defined 
in 7.3. 

The theorem shows, in particular, that the invariants l(L/K) and 
m(L/K) are uniquely determined by en (n^O), and, hence, also by 
the extension L/K, without knowing the structure of the extension 
M over L. 

7.6. In some special cases, the result of Theorem 11 can be ob­
tained more simply in the following manner: suppose, namely, that 
the field K has only one prime divisor p which is ramified for the ex­
tension L/K and suppose also that the inertia group of p for L/K 
coincides with T = G(L/K). Then, for each n*z0, the field Kn also 
has exactly one prime divisor pn which is ramified for L/Kn, namely, 
the unique extension of p on Kn. Applying the same argument as in 
7.4 for the case 5 = 1, we then see that the Galois group G(Ln/Kn) 
= Gn/[Gn, Gn] is the direct product of X/[Gny Gn] and the inertia 
group of pn for the abelian extension Ln/Kn, and, consequently, that 
the Galois group G(En/Kn) of the maximal unramified abelian p-
extension En over Kn is isomorphic with X/X*. Therefore, the com­
pact T-module X is strictly T-finite and, for every n^O, the degree 
pen— [ £ n ; j£n] is equal to the order of X/X*. We have thus: 

en = c(n; X), n à 0, 

with the characteristic function c(n; X) of the strictly F-finite com­
pact T-module X, and the result in Theorem 11 then follows im­
mediately from the dual of Theorem 4. 

7.7. We finally give here some examples of T-extensions of finite 
algebraic number fields, illustrating the results obtained above. 
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For each nèjzO, let Cn denote the field obtained by adjoining all 
pnth. roots of unity to the field of rational numbers Q. If p7*2, Cn+i 
is a cyclic extension of degree (p-~l)pn over Q and we denote by 
Fn the cyclic subextension of Cn+i/Q with degree pn over Q. On the 
other hand, if p = 2, we denote by Fn the maximal real subfield of 
Cn+2', Fn is again a cyclic extension of degree pn ( = 2n) over Q. In both 
cases, we have then a sequence of fields: 

Q = ^o C Fi C F2 C • • • , 

and the union of all these Fn (w^O) obviously gives us a T-extension 
E of Q. Suppose next that E' be any T-extension of Q and denote by 
Fn' the subfield of E' such that [Fn' : Q]=pn. By Lemma 7.1, the 
conductor of the cyclic extension Fn

f / Ç is a power of £, and it follows 
immediately that Fn

f — Fn for every n^O. Therefore, E' must coin­
cide with E and we know that E is the unique T-extension of the 
field of rational numbers Q. Now, it can be proved that, for every 
w^O, the class number of Fn is prime to p.iz Hence, we see from 
Theorem 9 tha t the maximal unramified abelian ^-extension of E 
just coincides with E itself and, consequently, that 

l(E/Q) = m(E/Q) = 0. 

More generally, for any finite algebraic number field K, the com­
posite of K and E in 0 always defines a T-extension L over K, 
though this is not necessarily the unique T-extension of K. 

Consider, in particular, the case where p9^2 and K is the cyclo-
tomic field of pth roots of unity. Then the subfield Kn of L = KE 
with degree pn over K is nothing but Cn+u and the assumptions 
stated in 7.6 are satisfied for the T-extension L/K. Therefore, by 
Theorem 11 or by the remark in 7.6, we immediately obtain the 
following 

THEOREM 12. Let p^2 and let Cn denote the cyclotomic field of pHh 
roots of unity ( ^ ^ 0 ) . Furthermore, let K=& and let L be the union of 
all Cn, n^O. Then there exists an integer no^O such that, for n^no, the 
exponent en of the highest power of p dividing the class number of Cn+i is 
given by 

en = In + mpn + c, 

where l = l(L/K) and m = m(L/K) are the invariants of the T-extension 
L/K as defined in 7.3, and c is a suitable integer independent of n. 

18 Cf. K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. 
Sem. Univ. Hamburg vol. 20 (1956) pp. 257-258. 
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Of course, a similar result can be obtained for p = 2, if we only put 
K — d and denote by en the highest power of 2 dividing the class 
number of Cn+2. However, for any regular prime p including p = 2, 
we know a more precise result that en~0 for all n^0.u Thus, in such 
a case, the maximal unramified abelian ^-extension M of L coincides 
with L itself and both invariants l(L/K) and m(L/K) are 0. On the 
other hand, if p is irregular, it can be shown that at least one of 
l(L/K) and m(L/K) is different from 0; in such a case, M is therefore 
an infinite extension of L. 

Further arithmetic properties of our invariants will be studied in 
our forthcoming papers. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

14 Cf. (12) above. 


