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1. Introduction. We consider the matrix linear differential operator 

d 
L~P(x,y;D) - E — 

dy 

for x = (xi, • • • , xn)ÇzEn and y £ [ƒ, y " ] , where E is the NXN 
identity matrix, 

X A a (a, y)D ) [ij = 1, • • •, N; b â 1 an integer], 
|*|s2b / 

(k) = (ki, • • • , kn) for non-negative integers kj, \k\ = ]C?-i kh and 
Dk = d{kl/dx% • • • dxln. We will use Dm to denote an arbitrary Dk 

with \k\ = m. Following Petrovskiï [ô], we say that L is uniformly 
parabolic in R = EnX [y', y"\ if there exists a constant ô > 0 such that 
all of the roots X=X(x, yf <r) of 

det i( E A{S (*, y)&rî) - \ E \ - 0 ["(AT)* = f[ «cry) 
V\|Je|-2& / / L j -1 

satisfy ReX(x, yf a)<—ô for all (x, y)(ER and real cr such that 
i C i - i 0 ? " ! * We assume throughout this paper tha t : (i) L is uni

formly parabolic in R and (ii) the coefficients A<j\x, y) of L are bounded 
uniformly continuous functions of y and satisfy a uniform Holder con
dition {with exponent a, 0 < a g l ) with respect to x in R. Our main 
result is a uniqueness theorem for the solution of the initial value 
problem (i.v.p.) 

(1.1) Lu = ƒ(*, y) in E- X (*, y"] ; u(x, t) = g(*) 

1 This work supported (in part) by the Office of Naval Research under Contract 
Nonr-710(16); (NR 043 041). 
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for arbitrary J £ [y', y") , where f(x, y) and g{x) are given N-vectors. 
In particular, we establish sufficient conditions for the unique repre
sentation of the solution of (1.1) in terms of the fundamental solution 
of Lu = 0. The i.v.p. (1.1) has been investigated by various authors, 
notably Êïdel'man [3; 4] and Slobodetskiï [8] (see also Rosen-
bloom [7]).2 These results will be described in the appropriate places 
below. 

2. Existence theory. An NXN matrix T(x, y; £, rç) defined in RXR 
for y>rj is said to be a fundamental solution (f.s.) of Lu = 0 if, as a 
function of x and y, T is a regular solution of Lu = 0 for y > t) and if for 
suitable iV-vectors g(x) 

lim I T(x, y; 
2/—>»?+ J 

*,1?)«(Ö# = «(*)•» 

Our results are based on the following 

THEOREM 1. If (i) and (ii) hold, then there exists a f.s. T(x, y\ £, rj) 
of Lu = 0 which can be written in the form 

r(«, y; f, rj) = GW{x, y ; fc n) + ƒ V ƒ G<«>(*, y; *, T ) ¥ ( J , r; {, *)<fr 

s G«>(*, y; É, 11) + W(*, y; €, *?), 

G<*>(*,y;*,it) = {2T)-*fe«*'*-»VW(y;i,, cr)da [ V , *) « £ * / * , ] > 

tóe matrix F(f)(y ; 17, 2) w tóe solution of (d/dy) 7 = P ( f , y; is) F ; 7(77) 
= £ [2 = (7+^7; cr, 7G-En]i Q>nd the matrix ^ (x , y; £, 97) is tóe solution 
of the integral equation 

*(*, y; *, 1?) = iG«>(», y; £,*?)+ƒ **• ƒ i c w (« , y; *, r)*(*, r; *, n)&. 

7%ere exis/ constants Ci>c2>Cz>Ci>0 and Km>0 depending only on 
8, y" —y' and the bounds for the A\f> such that 

2 In the Russian literature (1.1) is called the Cauchy problem. Petrovskifs defini
tion of parabolicity is given for somewhat more general systems involving higher order 
derivatives with respect to y. However, the i.v.p. for such systems can be reduced to 
(1.1) by the introduction of additional dependent variables. In the papers cited above, 
Èldel'man deals with these more general systems. 

8 If the range of integration is not specified, the integral is understood to be taken 
over the whole En. 
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(2.1) |D"G<»(*,y;*,u) | ^ Kiiy - v)-(n+m)nbeM-cip(x>y;lv)) 

[m = 0, 1, • • • , 2b + 1], 

(2.2) | i W f i ^ y ; ^ ) - Z>"G<»(*,y;É,i,) | 

^ i<r2(y - n)-(-n+m+^ib \x ' - x \"q exp(-c2p(:K, y; £, »?)) 

[m = 0, 1, • • • , 2b; 0 ^ ju ^ 1; | x' - * | , g (y - v)U2b], 

(2.3) | D"W(*, y;{,i»)| ^ #8(y - rç)-(n+M-a)/26exp(-C3p(*, y; £,»?)) 

[m = 0, 1, • • • , 2ft], 

awi 

Z»-TF(x', y; f, v) - DmW(x, y; £, n) 

fr, ,\ . - v , .-(n+m-a/2)/2b , ,«/4 
(2.4) ^ ^ ( y - i?) | # ' - x | a 

• {exp(-C4p(*', y; Ê, T?)) + exp(-c4p(x, y; £, i;))} 

[m = 0, 1, • • • , 20], 

where q = 2b/(2b-1), \x\ a = (J^^ x^)1'*, and p(x, y; £, r?) = (y- j , ) i -« 
•h-?|ea. 

REMARK. The paramatrix G(f)(x, 3̂ ; ^, 97) is the f.s. of P(f, 3/; 2>)w 
— (d/dy)u = 0 for any fixed f £ £ n . 

Theorem l (except for the Holder continuity of DmW) has been 
proved for the special case N~b = l in [ l ] ; a slightly more general 
result for N, b^ 1 has been announced by Èïdel'man [4]. In particu
lar, Êïdel'man uses a parametrix which depends only on the A$* for 
\k\ ==2b and consequently can dispense with the assumption that 
the continuity of the Affi with respect to y is uniform for x £ £ w when 
| A | <2&. Under this weaker hypothesis (2.4) is omitted and (2.2) 
holds with G(f) replaced by T. Our hypothesis (ii) is essential for our 
uniqueness results and permits certain simplifications in the existence 
theory. 

The proof of Theorem 1 for N, b > 1 is essentially the same as the 
proof in the case N~b — 1. The main difference is that in the latter 
case the parametrix is known explicitly, while in the former case its 
properties must be deduced from the corresponding properties of its 
Fourier transform (see, e.g., [3]). The principal difficulty in proving 
this theorem lies in proving the existence of D2bW. We outline briefly 
the method of dealing with this point. Let x 0 £ £ n be arbitrary and 
consider for all x which satisfy |x — x01«^ 1/2 
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ƒ * r /*(n_1) 

D2bG^(x,y;s,r)ds = - I D2b~lG^{x, y; s, r)dvs 
L J |«-a?olc-l 

+ f {D»GM - D2bG^}ds + f D*bG™ds\ .4 

Since 

| D»G<n(x, y; *, i,) - JD*G<r>(*, y; *, 17) | 

^ JT5(y - ? ?)" ( w + m ) / 2 & | f _ ^ | " exp(-£?ip(^ y; ?, 77)) 

[w = 0, 1, • • • , 26] 

it follows that |/*£>2&G<s)ds| gi£6(y-T)-1+<*/2&, where i£ 6 >0 is inde
pendent of Moreover, it can be shown that \^i\ 
^K7(y~rj)-^2b'a^2h exp(-c 5p) and 

T/ / fc N T / t N I > rr / N~(w+26-a/2)/26 1 .a/2 

•{exp(-chP(x', y; £, 17)) + exp(-c5p(x, y; £, 17))}, 

where Ci>c5>0. From these facts we can show that D2bW exists and 
can be written in the form 

/

(l/-H)/2 /» 

j T J Z7J»G<'>(«,y;j,T)^(j,T;fci?)* 

+ ƒ fl"GW[*(», T; {, n) - ¥(*, T; fc *)]&} 

for X "~~" XQ L ^ l / 2 and y>rç. The estimate (2.3) follows immediately 
from (2.5). To prove (2.4) we use (2.5) together with 

D2bG^(x'y y; s, r)ds - I D2bG^(x, y; s, -)ds 

g A9(y — T) \X' — x \ q 

for |#'— # 1 ^ 1 / 4 and the observation that 
4 We use Hopfs notation [5] for the boundary integral over \XQ—S\ 3 = 1. 



314 D. G. ARONSON [September 

jDmG^(x+h9 y;str) ¥(*, r ; £, y)ds 

\D™G(*+h)(x, y; s, T)*(s+h, r ; £, r})ds. fi 
Let c, e > 0 be chosen such that 

I DmV | £K(y- v)~<n+m»*b exp(-(<? + e)p). 

For any constant j8^0 and y' ^tl&y^y" define 

j(y, t) = ^ / [ c 2 ^ 1 - (y - /)^6-i]i/(2&-i)4 

If Dlw(x, y) is a continuous function of # £ £ > define 

9l<[w;y, *] = l.u.b. { | Z> w(«, 3/) | exp(-*(y, t) \ x\l)} 

and 

9^i+/«[w;y, *] = l.u.b. {min[exp(—&(y, /) | #' |fl), exp(—&(y, i) \ x\l)] 
x',xeEn 

• I D%w(x', y) - D%w(x, y) \ / \ x' - x Q [ 0 < ^ l ] , 

where the l.u.b. is taken with respect to all derivatives of order i. 
From Theorem 1 and the fact that — cp(x, y; £, y)+k(r), t)\%\l 
^Ky> t)\x\a

q for 3>eD, y*] , where y*- /<(c/ j8)» 6 - 1 and y*2§y", we 
prove 

THEOREM 2. Assume that 
(a) 91(g) =l.u.b.jG?n{ I g(x) I e_/3|aî|g} < 00 and g(x) continuous in En. 
(b) f(x, y) continuous in EnX(t, y*] , 9lo[f; 3>, *] < °° for yG(t, y*] , 

and f?Vlo[f;T, t]dr<*>. 
(c) 7^ ^^ry compact subregion of EnX(t, y*]ƒ(#, y) w Holder con

tinuous with respect to x. 
If (i) and (ii) hold, then 

(2.6) «(*, y) = ƒ r(*, y ; fc 0«(Ö# - ƒ \ ƒ r(*, y ; £, *)ƒ({, *)# 

is a regular solution of the i.v.p. (1.1) iw EnX [t, y*] . T/iere extós a 
constant K(e)>0 depending on e, ô, y"—y' and the bounds for the 
A\f\ but not on y or t, such that 

f!U[u; y, t] £ K(e) i(y - l)-»"»Vl(g) + ƒ \y - v^'^olf; V, *]*»} 

( 2 - 7 ) ' r 
[m = 0, 1, • • • , 2b - 1]. 
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For arbitrary Xo(~En and all x which satisfy \ x ~x01 q S1/2 

D**u(x, y) = ƒ D™T(x, y ; {, t)g(Qdt 

/

(iH-O/2 / . 

(2.8) ~f"dr>f Ö'W(*' ^; *' ")/(?' *)d* 

•J (y+O/2 l \ « ' / 

+ ƒ JW»[fft, *)-ƒ(*, *)]#}. 

Moreover, Dmu is Holder continuous with respect to x in every compact 
subregion of EnX(t, y*]for w = 0, 1, • • • , 26. 

If we replace (c) by (c') 31O+M[/Î % ]̂ < °° for y£(J, y*}, then 

Vl2b[u; y} t] g K(e) | (y - J)"1 (91(g) + ƒ Vol/ ; V, *]<&*) + (y ~ *)"'» 

• sup 9l0+,[/; *, <] + f "(^ - 77)-i+«/26DIo[/; ^ j ] ^ I . 

ƒƒ w<? replace (a) awd (c) 6y 

(a") 91(g) < oo and^ig) = l.u.b. {minfexpC-^ I a/ I*), 
x',xeEn 

exp(-0 | * |2)] | g(x') - g(#) |/ | a' - a |ï} < oo 
and 

(c") ^IO+MI/; y, /] < °° for y G (*, y*] and J 9lo+M[/ï 7̂, *]<fy < °° 

respectively, then 

9l»[«;y, *] ^ *(c) | (y - t)-1+"*b[vi{g) + %>(g)] 

+ f \ y - v)-1+vl2b(^[f; v, t] + 91O+M[/; *, *!)*?}, 

w&ere p = min(/x, ce). 

A result similar to Theorem 2 is proved in [l] for iV = 6 = l. 
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3. Uniqueness theory. We now consider the question of under 
what conditions (2.6) is the unique solution of (1.1). I t has been 
shown by Èïdel'man [3; 4] and Slobodetskiï [8] that 

THEOREM 3. If (i) holds and if the coefficients Aff of L are such 
that the f.s. of the adjoint system Lu = 0 exists, then the only regular 
solution of 

(3.1) Lu = 0 in En X (*, y*]; u(x, /) = 0 

which satisfies 9lo[«; y, t] < oo for y G [t, y*] is u(x, y) = 0 . 

I t is clear that under our hypothesis (ii) Theorem 3 is not, in gen
eral, valid. However, by further restricting the class of solutions 
under consideration we obtain the following extension of Theorem 3, 
which is the main result of this investigation. 

THEOREM 4. If (i) and (ii) hold and if u(x, y) is a regular solution of 
(3.1) in EnX [t, y*] such that (a)Dmu(x, y) is Holder continuous with 
respect to x in EnX(t, y*] and (j8)9lw[#; y, t]< <*> for y(~(t, y*] for 
m — 0, 1, • • • , 26 then u(x, y)^0. 

The proof of Theorem 4, which we sketch below, is based on certain 
a priori estimates for the Dmu. The method was suggested by the 
Douglis-Nierenberg derivation of the Schauder estimates for elliptic 
systems [2], although the basic ideas occur in [S]. 

We first prove 

LEMMA 1. If (i) and (ii) hold and if u is a regular solution of (3.1) in 
EnX[ty y*] which satisfies (a), (|8) and (y)ft$lm[u; r, t]dr<°o for 
m — 0, 1, • • • , 26 then u(x, y)^0. 

Let f £ ü > be arbitrary. Then u is a regular solution in EnX [t, y*] 
of the i.v.p. 

AWusP(?,y;D)u-—u={PQ;,y-,D)-P(x,y,D)}u(x,y) 
(3.2) dy 

s FM(x, y) in En X (/, y*]; u(x, t) = 0 

where, in view of (ii) and the conditions on Dmuy F^(x} y) satisfies 
(b) and (c) of Theorem 2 uniformly for f £ E w . For fixed fG-Ew, 
G(f)(x, y; £, rç) is a f.s. of A(f)w = 0 as a function of x, y and a f.s. of the 
adjoint system as a function of £, rç. Thus, by Theorems 2 and 3 

(3.3) D»u(x,y) = - ƒ \ ƒ DwG^(x,3;;ê,r?)F ( n(^r?)^ 

[m = 0, 1, • • • 26 - 1] 
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and, in view of (2.8), 

/

(irt-0/2 /. 

(3.30 - f" drjif f D*bGMdï)FW(x9i,) 
J (y+O/2 \\J / 

+ ƒ Z)2&G<f>[/r(f)(̂  v) - pwfa v)]dfX 

for arbitrary f, #0£-En and L g l / 2 . In particular, choose 
f = Xo = x . Then, by (ii) and (3.2), ƒ**>(*, 17)s0 and | F<*>(£, rj)\ 
£&\x-£\ï2*o | ^ ^ ( i -iy)| for rç>*, where X > 0 is independent of 
x, J, 77. Since the constant in (2.1) is also independent of x, y, £, rj, 
it follows by applying these estimates to (3.3) and (3.3') that there 
exists a constant Qi >0 depending only on S, €, y —y and the bounds 
for the Affi such that 

ƒ» y 2b 

(y - „)-(*->/*» X 9U«; V, t]dr, 
, „ t m-0 

[i = 0, 1, • • - , 2 6 ] . 
Define 

> y 2& ƒ• y 20 

t m«0 

where, by (7), îïïl[u) y ]<oo for y(~:[t, y*]. Then integrating both 
sides of (3.4) with respect to y and interchanging the order of integra
tions on the right hand side, it is easy to show that there exists a 
constant Q > 0 depending on Qi and a such that 

m[u; y] Û Q(y - t)°l2bWC[u; y] for y G [/, y*]. 

The proof of Lemma 1 can now be completed by standard arguments. 
An immediate consequence of Theorem 2 and Lemma 1 is the 

following 

LEMMA 2. If (i) and (ii) hold and if f and g satisfy (a"), (b) and (c")> 
then (2.6) is the only regular solution of (1.1) in EnX[t, y*] which 
satisfies (ce), (j3) and (7). 

Suppose now that u satisfies only the hypothesis of Theorem 4. For 
arbitrary (x, y) in £WX(/, y*] consider the i.v.p. 

(3.5) Lv = 0 in En X (T, y*]; »(*, r) = «(*, r) , 
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where t<r^(y+t)/2. By Lemma 2 and Theorem 2, since u satisfies 
(a), (/3) and (7) in EnX [r, y*]f u(x, y)^v(x, y; r) in EnX [r, 3/*] for 
any r£ ( f , (3>+/)/2], where v(x, y; r) =fT(x, y\ £, r)«(£, r)d£. In view 
of continuity of #(#, y) in £ n X [£, y*] and of r (# , y ; £, r) as a function 
of r, uniformly for r ^ (;y+/)/2 <y , it follows that lirnr-H- v(x, y;r)~0 
in EnX(t, y*] . Thus #(#, y)~0 in EnX(t, y*] and, by continuity, 
the theorem is proved. 

Finally, in view of Theorems 2 and 4 we have 

THEOREM 5. If (i) and (ii) fto/d and if f and g satisfy (a), (b) and (c'), 
then (2.6) is /&£ only regular solution of (1.1) in Enx[t, y*] which 
satisfies (a) and (j3). 

REMARK. The results of §§2 and 3 can be easily generalized by 
replacing 9lTO[w; y, t] by 

9*p.4«; y> '] = ( ƒ I J>V& y) T exp(-**(y,o U|«)^j * 

for any 1^^?^ 00 (cf. [4; 8]). 
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