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We say, with Beurling [l ], that ƒ is a contraction of g if \f(x) —f(y) \ 
^ I i(x) -~i(y) | • Beurling established the following theorem. 

THEOREM 1. If ƒ and g are continuous even functions, of period 2w, 
with Fourier cosine coefficients cn and gn> iff is a contraction of g, and if 
|gn\ ^7n, where yn I 0 and JjYn< <*> ; then ] £ | cn\ < <x>. 

Since saying that ƒ is a contraction of g is essentially the same as 
saying that ƒ is a Lipschitzian function of g, theorems like Theorem 1 
have gained in interest since the recent discovery [3 ] that in general 
only analytic functions operate on all absolutely convergent Fourier 
series with preservation of absolute convergence. 

I shall give an elementary proof of a generalization of Theorem 1. 
Further investigations along these lines by M. Kinukawa, M. and S. 
Izumi, and the author are in progress. 

THEOREM 2. Theorem 1 remains true when the hypothesis that yn | 0 
is replaced by 

00 „/« / * , „ \ 1/2 «> , / A / «> , \ 1/2 

(i) T,n-miT,k\l\ +£%-1/2{ £Y*2} <«. 
n - 1 V &-1 ) n - 1 V * - n + l ) 

Beurling^ theorem follows from Theorem 2 since when yn I 0, or 
even when n~*yn I 0 (X>0), the series in (1) converge if ^jyn con­
verges. This lemma has been proved by Konyushkov [4] ; it is a corol­
lary of more general results that I discuss elsewhere [2 ] by a different 
method; a proof by a still different method, that yields exact con­
stants in the inequalities involved, has been obtained by S. Loja-
siewicz. 

Condition (1) can also be satisfied when {yn} is not required to 
satisfy a condition of monotonicity. If ^w 1 / 27n<°°, the left-hand 
side of (1) does not exceed, by Jensen's inequality, 
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Z »-8/2 Z hk + Z «~I/2 E Y* 
w—l Jfĉ w n-»l fc>n 

= E *T* Z «_a/2 + Ë T * E «~1/2 

g E •Y-W2). 

Hence the hypothesis yn 1 0 in Theorem 1 can be replaced by 
]C^1/27w< °°. In other words, the cosine series of ƒ converges abso­
lutely if ƒ is a contraction of g and g has a derivative of order 1/2 that 
has an absolutely convergent Fourier series. 

PROOF OF THEOREM 2. What is actually used in Beurling's proof 
(and in this one) is the condition 

(2) f * I /(*+*) - /(*) l2<** £ f ' U(* + *) - f(*) N*, 
«/ o J o 

which may be thought of as saying that ƒ is an average contraction of 
g. Take h = ir/n1 where n is a positive integer. By Parseval's theorem 
we can write (2) in the form 

(3) £ <* sin2 (kr/(2n)) S E ft sin' (kw/(2n)) ^ £ 7* sin' (Jhr/(2»)). 
fc=l k~*l Jfc-1 

L e t <£n = E 2 - i * | * |. Then 

V J f c - 1 

and by partial summation 

Zk| = Z «-K*. -
i V - 1 

= Z Un-1 -

s 2 I l/2 

0n-l) 

(» + l)- : 

â Z «»/«2 + 4>»/N 

sf«-"'{iJ'4",+ff-"'{2«V" 
- Si. + Si 



26 R. P. BOAS, JR. [January 

say. From (3) we have, since sin x*z2x/ic for O ^ ^ ^ T T / 2 , 

w 2 2 2 -**,. 2 2 2 4. -» 2 2 

2_,k Ck ^ n 2J c* sin (kw/(2n)) ^ n 2^yk sin (for/(2#)), 

and hence 
JV / oo \ 1/2 

(4) 5x sS E » 1 E 7* sin (kw/(2n)) [ , 
n~l V A=»l / 

(5) S2 £ i\T1/21 E 7* sin' (far/(2»)) } . 

We must now show that Si and 52 are bounded as N—» oo. For 52, 
we have 

S' ^ N E * 7*VV(4^2) + A" E 7* 
A-l fc-tf+l 

^ 1 ^ T - 1 V ^ IL2 2 I *T \ ^ 2 

£ — T N 2L,kyk + N 2-r 7* 
4 A-i &«iv+i 

- Ti + r2. 

The second series in (1) has decreasing terms, which must therefore 
be 0(1/»); hence r2 = 0(l) . 

Call the first series in (1) ^frznAn\ here An increases. We have 

22V 2N 

E tr*<2An ^ ANY< n~312 à CANN~l'\ 
N N 

with an irrelevant constant C, and hence A%/N—»0. Thus, in particu­
lar, r i = 0(l) . This disposes of 52. 

We write 

N t n oo \ 1/2 

5x^E« y { Z + E 1 
n-1 V * - l ft-n+1 / 
2V / n \ 1/2 

S E » i E TÎ sin'(Jhr/(2«)) } 
n-1 V Jfc-1 / 

N f oo \ 1/2 

+ E « { E 7Î «in (W(2«)) > 
n-1 V fc-n+1 / 

SW2,|;.-"-{ÉJ'T,'}",
+ i;»-"{z;T:}"'. 

n - 1 V * - l ) n - 1 V Jfe-n+1 / 
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If we assume (1), the two sums on the right are bounded. This com­
pletes the proof. 
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