ON AN IDENTITY OF BLOCK AND MARSCHAK1

BY J. G. VAN DER CORPUT

Communicated by Edwin Moise, July 29, 1959

In the Bulletin of the American Mathematical Society² H. D. Block and Jacob Marschak proved for each choice of the positive integers m and n with $m \le n$ the identity

(1)
$$\sum_{1} \{(u_{s_1} + u_{s_2} + \cdots + u_{s_n})(u_{s_2} + u_{s_3} + \cdots + u_{s_n}) \cdots (u_{s_{n-1}} + u_{s_n})u_{s_n}\}^{-1}$$

$$= \{(u_1 + u_2 + \cdots + u_n)u_2u_3 \cdots u_n\}^{-1},$$

where u_1, \dots, u_n denote indefinite numbers and where \sum_1 is extended over all the permutations (s_1, s_2, \dots, s_n) of $(1, 2, \dots, n)$ which rank 1 before each of the numbers $2, 3, \dots, m$.

In this paper I shall prove: If p, q and n denote integers with $0 \le p \le q \le n$ and $n \ge 1$, then

$$\sum_{2} \left\{ (u_{s_{1}} + u_{s_{2}} + \cdots + u_{s_{n}})(u_{s_{2}} + u_{s_{3}} + \cdots + u_{s_{n}}) \cdots \right.$$

$$(2) \qquad (u_{s_{n-1}} + u_{s_{n}})u_{s_{n}} \right\}^{-1}$$

$$= \left\{ (u_{1} + u_{2} + \cdots + u_{q})(u_{2} + \cdots + u_{q}) \cdots \right.$$

$$(u_{p} + \cdots + u_{q})u_{p+1} \cdots u_{n} \right\}^{-1},$$

where \sum_2 is extended over the permutations (s_1, s_2, \dots, s_n) of $(1, 2, \dots, n)$ which rank 1 before 2; 2 before 3; \dots ; p-1 before p and finally p before each of the numbers $p+1, p+2, \dots, q$.

The particular case p = 1, q = m yields (1).

In the proof of (2) I treat first the case q=n. Then $\sum_{i=1}^{n} a_i$ is extended over the permutations (s_1, \dots, s_n) with $s_h = h$ $(1 \le h \le p)$, where (s_{p+1}, \dots, s_n) is an arbitrary permutation of $(p+1, \dots, n)$. In this case we must show that

(3)
$$\sum_{2} = \{(u_{1} + \cdots + u_{n})(u_{2} + \cdots + u_{n}) \cdots (u_{p} + \cdots + u_{n})u_{p+1} \cdots u_{n}\}^{-1}.$$

In the case p=n the sum \sum_{2} consists of only one term namely

¹ This paper is sponsored by the United States Army under Contract No. DA-11-022-ORD-2059.

² H. D. Block and Jacob Marschak, *An identity in arithmetic*, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 123-124. Without loss of generality we may choose i=1 in their identity and then this identity assumes the simpler form indicated in (1).

 $(u_1 + \cdots + u_n)^{-1}$. I may therefore assume that p is $\leq n-1$ and that (3) has already been proved with p replaced by p+1. For each integer $h \geq p+1$ and $\leq n$ the contribution to \sum_2 of the permutations (s_{p+1}, \cdots, s_n) with $s_{p+1} = h$ is according to the induction hypothesis equal to

$$u_h\{(u_1+\cdots+u_n)(u_2+\cdots+u_n)\cdots (u_{p+1}+\cdots+u_n)u_{p+1}\cdots u_n\}^{-1},$$

so that

$$\sum_{2} = \{(u_{1} + \cdots + u_{n})(u_{2} + \cdots + u_{n}) \cdots (u_{p+1} + \cdots + u_{n})u_{p+1} \cdots u_{n}\}^{-1} \sum_{h=n+1}^{n} u_{h},$$

which gives the required result (3).

Finally we treat the case $p \le q \le n-1$ and we may assume that (2) has already been proved with p replaced by p+1. We must prove that

(4)
$$u_{p+1}u_{p+2}\cdots u_n\sum_{2}=[p+1,p+2,\cdots,q]/[1,2,\cdots,q],$$
 where

$$[a_1, a_2, \cdots, a_t] = (u_{a_1} + u_{a_2} + \cdots + u_{a_t})(u_{a_2} + u_{a_3} + \cdots + u_{a_t})$$
$$\cdots (u_{a_{t-1}} + u_{a_t})u_{a_t};$$

the right hand side means 1 if t=0.

By the induction hypothesis the contribution to $u_{p+1} \cdots u_n \sum_2$ of the permutations (s_1, s_2, \cdots, s_n) which rank p before q+1 is equal to $[p+1, \cdots, q+1]/[1, \cdots, q+1]$; the contribution to $u_{p+1} \cdots u_n \sum_2$ of the permutations which rank q+1 between h-1 and h is for each integer h with $2 \le h \le p$ equal to

$$u_{q+1}[p+1,\cdots,q]/[1,\cdots,h-1,q+1,h,\cdots,q]$$

and finally the contribution to $u_{p+1} \cdot \cdot \cdot u_n \sum_{2} \cdot u_n = 0$ of the permutations which rank q+1 before 1 is equal to

$$u_{q+1}[p+1,\cdots,q]/[q+1,1,\cdots q].$$

In this way we find

$$u_{p+1}u_{p+2}\cdots u_n\sum_{2}=\frac{[p+1,\cdots,q+1]}{[1,\cdots,q+1]} + u_{q+1}\sum_{h=1}^{p}\frac{[p+1,\cdots,q]}{[1,\cdots,h-1,q+1,h,\cdots,q]}.$$

It is therefore sufficient to prove that

(5)
$$\frac{[p+1,\dots,q+1]}{[1,\dots,q+1]} + u_{q+1} \sum_{h=1}^{p} \frac{[p+1,\dots,q]}{[1,\dots,h-1,q+1,h,\dots,q]} = \frac{[p+1,\dots,q]}{[1,\dots,q]}.$$

This identity is obvious for p=0, so that I may assume that p is ≥ 1 and that (5) has already been proved with p replaced by p-1. The term with h=1 occurring on the left hand side of (5) is equal to $(u_1 + \cdots + u_{q+1})^{-1}$ times

$$u_{q+1}\frac{[p+1,\cdots,q]}{(u_1+\cdots+u_q)[2,\cdots,q]},$$

so that this term is a rational function of u_1 which possesses at $u_1 = -(u_2 + \cdots + u_{g+1})$ a simple pole with residue

$$-[p+1,\cdots,q]/[2,\cdots,q]$$

and at $u_1 = -(u_2 + \cdots + u_q)$ a simple pole with residue

$$[p+1,\cdots,q]/[2,\cdots,q].$$

The left hand side of (5) is therefore a rational function of u_1 which possesses at $u_1 = -(u_2 + \cdots + u_{g+1})$ a simple pole with residue

$$\frac{[p+1,\cdots,q+1]}{[2,\cdots,q+1]} + u_{q+1} \sum_{h=2}^{p} \frac{[p+1,\cdots,q]}{[2,\cdots,h-1,q+1,h,\cdots,q]} - \frac{[p+1,\cdots,q]}{[2,\cdots,q]}.$$

This expression assumes, if we replace u_2 , u_3 , \cdots , u_{g+1} by u_1 , u_2 , \cdots , u_g , the form

$$\frac{[p, \dots, q]}{[1, \dots, q]} + u_q \sum_{h=1}^{p-1} \frac{[p, \dots, q-1]}{[1, \dots, h-1, q, h, \dots, q-1]} - \frac{[p, \dots, q-1]}{[1, \dots, q-1]}$$

which is equal to zero according to formula (5) applied with p and q replaced by p-1 and q-1. Consequently the left hand side of (5) is a rational function of u_1 which has at $u_1 = -(u_2 + \cdots + u_{q+1})$ a simple pole with residue 0, so that this function is analytic at that

point. This function has at $u_1 = -(u_2 + \cdots + u_q)$ a simple pole with residue $[p+1, \cdots, q]/[2, \cdots, q]$ and this is also the case with the function occurring on the right hand side of (5). All the terms occurring in (5) are analytic functions of u_1 , apart of the points $u_1 = -(u_2 + \cdots + u_{q+1})$ and $u_1 = -(u_2 + \cdots + u_q)$, so that the difference between the two sides of (5) is a rational function of u_1 without poles which tends for $u_1 \to \infty$ to zero; this difference is therefore identically equal to zero. This completes the proof.

MATHEMATICS RESEARCH CENTER, UNITED STATES ARMY, MADISON, WIS.