THE DIFFERENTIABILITY OF TRANSITION FUNCTIONS¹

BY DONALD ORNSTEIN

Communicated by J. L. Doob, October 6, 1959

In this paper we prove that the transition functions of a denumerable Markoff chain are differentiable or equivalently: Given a matrix of real valued functions $P_{ij}(t)$ $(i, j=1, 2, \dots)$ $0 \le t < \infty$ satisfying

(1)
$$P_{ij}(t)$$
 is non-negative and continuous,

(2)
$$P_{ij}(0) = \begin{cases} 1 \text{ if } i = j, \\ 0 \text{ if } i \neq j, \end{cases}$$

(3)
$$P_{ij}(t_1+t_2) = \sum_{k=1}^{\infty} P_{ik}(t_1) P_{kj}(t_2),$$

(4)
$$\sum_{j=1}^{\infty} P_{ij}(t) = 1.^{2}$$

Our theorem is that $P_{ij}(t)$ has a finite continuous derivative for all t>0.

This result was conjectured by Kolmogoroff in [4].

Doob showed [3] that $P_{ij}(t)$ has a right hand derivative (possibly infinite) at t=0 and Kolmogoroff showed [4] that this derivative is finite if $i \neq j$, (if i=j there are examples where it is infinite). Austin [1; 2] showed that that $P_{ij}(t)$ has a finite continuous derivative for t>0 if either $P_{ii}(t)$ or $P_{jj}(t)$ has a finite derivative at 0.

We will now give the proof⁸ of our theorem. We will think of the matrices $\{P_{ij}(t)\}$ as transformations on sequences in such a way that $\{P_{ij}(t)\}$ transforms the sequence with 1 in the *m*th place and 0 elsewhere into the sequence whose *k*th term is $P_{mk}(t)$. We will use letters like *v* to denote a sequence, *T* to denote a particular matrix and T(v) to denote the sequence *v* transformed by the matrix *T*.

Our first step will be to show that $P_{11}(t)$ has bounded variation in some interval (say from 0 to t_0). To do this we will estimate $\sum_{i=0}^{N-1} |P_{11}(it_0/N) - P_{11}((i+1)t_0/N)|$ for a fixed integer N. The estimate will turn out to be independent of N. To simplify notation we will let $T = \{P_{ij}(t_0/N)\}$ and let $f_i = P_{11}(it_0/N)$.

We will first define a sequence of vectors (or sequences) v_i . v_0 will be the sequence with 1 in the first place and 0 elsewhere. Let us de-

¹ This research was supported in part by the United States Air Force under contract AF49(638)-265, monitored by the Office of Scientific Research.

² This condition has been eliminated by Professor Jurkat.

⁸ I wish to thank Professor Chung for valuable aid and encouragement in the preparation of this paper.

denote by v^* the sequence whose first term is 0 and which agrees with v everywhere else. Define $v_{i+1} = (T(v_i))^*$. We then have

(1)
$$T^{s}(v_{0}) = \sum_{i=0}^{s} f_{s-i}v_{i}.$$

This is easily verified by induction (note that the first coordinate of $T^{s}(v_{0}) = f_{s}$ by definition). We will define a sequence of positive real numbers β_{i} . $\beta_{0} = 1 - f_{1}$ and β_{i} $(i \ge 1)$ is the first coordinate of $T(v_{i})$. The following formula is also easy to check.

(2)
$$f_{s+1} - f_s = -f_s \beta_0 + \sum_{i=1}^s f_{s-i} \beta_i.$$

(We must interpret $\sum_{i=1}^{0}$ as 0). Rewriting (2) we get

$$f_{s+1} - f_s = f_s \sum_{i=1}^s \beta_i - f_s \beta_0 + \sum_{i=1}^s (f_{s-i} - f_s) \beta_i.$$

(3)
$$\sum_{s=0}^{N-1} |f_s - f_{s+1}| \leq \sum_{s=0}^{N-1} |f_s| \sum_{i=1}^{s} \beta_i - f_s \beta_0| + \sum_{s=0}^{N-1} \sum_{i=1}^{s} |f_{s-i} - f_s| \beta_i.$$

(4)
$$\sum_{s=0}^{N-1} \sum_{i=1}^{s} \left| f_{s-i} - f_s \right| \beta_i \leq \left(\sum_{s=0}^{N-1} \left| f_s - f_{s+1} \right| \right) \left(\sum_{i=1}^{N-1} i\beta_i \right).$$

To see (4) note that

$$\sum_{s=0}^{N-1} \sum_{i=1}^{s} \left| f_{s-i} - f_{s} \right| \beta_{i} = \sum_{j=1}^{N-1} \sum_{k=j}^{N-1} \left| f_{k-j} - f_{k} \right| \beta_{j}$$

and

$$\sum_{k=i}^{N-1} |f_{k-j} - f_k| \leq i \sum_{s=0}^{N-1} |f_s - f_{s+1}|.$$

From (3) and (4) we get

(5)
$$\sum_{s=0}^{N-1} |f_s - f_{s+1}| \leq \left(\sum_{s=0}^{N-1} |f_s - f_{s+1}|\right) \left(\sum_{i=1}^{N-1} i\beta_i\right) + \sum_{s=0}^{N-1} |f_s \sum_{i=1}^{s} \beta_i - f_s \beta_0|.$$

If we now assume that the t_0 we used in defining T has the property that $P_{11}(t) > 3/4$ for all $t < t_0$ we will be able to show that both $\sum_{i=1}^{N-1} i\beta_i$ and $\sum_{s=0}^{N-1} |f_s \sum_{i=1}^{s} \beta_i - f_s \beta_0|$ are <1/2. This and (5) will then immediately imply that $\sum_{s=0}^{N-1} |f_s - f_{s+1}| < 1$ and, since $P_{11}(t)$ is DONALD ORNSTEIN

continuous and our estimate does not depend on N, that the variation of $P_{11}(t)$ $(t < t_0)$ is ≤ 1 . To get $\sum_{i=1}^{N-1} i\beta_i < 1/2$ we note first that $\sum_{i=1}^{N-1} i\beta_i < \sum_{i=1}^{N} |v_i| (|v|| = \text{sum of the absolute values of the coordinates of <math>v$) since $\beta_i = |v_i| - |v_{i+1}|$. Next we show that $\sum_{i=1}^{N} |v_i| < 1/2$. $T^N(v_0) = f_N v_0 + \sum_{i=1}^{N} f_{N-i} v_i$ and since row sums = 1, $\sum_{i=1}^{N} f_{N-i} |v_i| = 1 - f_N < 1/4$. Each of the $f_{N-i} > 1/2$ so $\sum_{i=1}^{N} \beta_i |v_i| < 1/2$. $\sum_{s=0}^{N-1} |f_s \sum_{i=1}^{s} \beta_i - f_s \beta_0| < 1/2$ because $|\beta_0 - \sum_{i=1}^{s} \beta_i| = |v_{s+1}|$.

We now know that $P_{11}(t)$ has variation <1 in a certain interval about 0. The following argument shows that the variation of $P_{1j}(t) \leq 4$ in the same interval.

$$T^{s+1}(v_0) - T^s(v_0) = \sum_{i=0}^{s+1} (f_{s+1-i} - f_{s-i})v_i, \qquad (f_{-1} = 0)$$
(6)
$$\sum_{s=0}^{N-1} |T^{s+1}(v_0) - T^s(v_0)| \leq \sum_{i=0}^{N} \sum_{s=i-1}^{N-1} |(f_{s+1-i} - f_{s-i})v_i|$$

$$\leq \sum_{i=0}^{N} 2|v_i| \leq 4.$$

The remainder of the proof follows a suggestion of K. L. Chung.⁴ Functions of bounded variation have a finite derivative almost everywhere and we can therefore pick a $t_1 < t_0$ such that $P_{1j}(t)$ has a derivative at t_1 for all j. For an arbitrary t_2 the existence of a derivative for $P_{1i}(t_1+t_2)$ $(i=1 \cdot \cdot \cdot \infty)$ follows from the fact that

$$\frac{P_{1i}(t_1+t_2)-P_{1i}(t_1+t_2+\alpha)}{\alpha} = \sum_{k=1}^{\infty} \frac{P_{1k}(t_1)-P_{1k}(t_1+\alpha)}{\alpha} P_{ki}(t_2)$$

and the following lemma: given ϵ there exists an integer K such that

(7)
$$\sum_{j=K}^{\infty} \frac{\left| P_{1j}(t_1) - P_{1j}(t_1 + \alpha) \right|}{\alpha} < \epsilon, \quad \frac{t_1}{4} > \alpha > 0.$$

We conclude by proving (7). For a given $\alpha < t_1/4$ we will pick a t'_0 between t_1 and $t_1/2$ and an integer N such that $t'_0/N = \alpha$ and we will define T and v_i as before, except that we will use t'_0 instead of t_0 .

It is easy to show that given ϵ_1 (we will pick ϵ_1 to be $\langle (1/8)\epsilon \cdot t_1/2 \cdot 1/2 \rangle$) there is a K_1 such that $\sum_{j=K_1}^{\infty} P_{1j}(t) \langle \epsilon_1$ for all $t \langle t_1$. We then have $\sum_{i=1}^{N} |v_i^{K_1}| \langle 2\epsilon_1(|v_i^{K_1}|) \rangle$ is the sum of the absolute values of the terms of v_i with index $\geq K_1$). The same argument as the one used in (6) shows

⁴ The original proof did not make use of the theorem that functions of bounded variation have derivatives almost everywhere and was very much longer. Professor Chung's idea also gives $P'_{1i}(t_1+t_2) = \sum_k P_{1k}(t_1)P'_{ki}(t_2)$. Professor Chung has also proved (in a different way) that $P'_{1i}(t_1+t_2) = \sum_k P_{1k}(t_1)P'_{ki}(t_2)$.

1960] TH

(8)
$$\sum_{s=1}^{N-1} \sum_{j=K_1}^{\infty} |P_{1j}((s+1)\alpha) - P_{1j}(s\alpha)| < 4\epsilon_1.$$

There are at least (N-1)/2 integers s such that

(9)
$$\sum_{j=K_1}^{\infty} \left| P_{1j}((s+1)\alpha) - P_{1j}(s\alpha) \right| < 8\epsilon_1 \frac{1}{N}$$

and for one of these, call it r,

(10)
$$\sum_{j=1}^{K_1} |P_{1j}((r+1)\alpha) - P_{1j}(r\alpha)| < \frac{8}{N}.$$

This follows from (6). We now pick ϵ_2 (make it $<\epsilon \cdot (1/8)K_1 \cdot t_{1/2} \cdot 1/2$). There is a $K > K_1$ such that

(11)

$$\sum_{j=K}^{\infty} P_{ij}(t) < \epsilon_{2} \quad \text{for all } t < t_{1} \text{ and } i \leq K_{1},$$

$$\sum_{j=K}^{\infty} \left| P_{1j}(t_{1}) - P_{1j}(t_{1} + \alpha) \right|$$

$$\leq \sum_{m=K}^{\infty} \sum_{j=1}^{\infty} \left| P_{1j}(r\alpha) - P_{1j}(r+1)\alpha \right| P_{jm}(t_{1} - r\alpha)$$

$$= \sum_{m=K}^{\infty} \sum_{j=K_{1}+1}^{\infty} \left| P_{1j}(r\alpha) - P_{1j}((r+1)\alpha) \right| P_{jm}(t - r\alpha)$$

$$+ \sum_{m=K}^{\infty} \sum_{j=1}^{K_{1}} \left| P_{1j}(r\alpha) - P_{1j}((r+1)\alpha) \right| P_{jm}(t_{1} - r\alpha).$$

The first term of this last expression is $< 8\epsilon_1 \cdot 1/N$ by (9), $|P_{1j}(r\alpha) - P_{1j}((r+1)\alpha)| < 8/N$ by (10) and $\sum_{m=K}^{\infty} P_{jm}(t_1 - r\alpha) < \epsilon_2$ for each $j < K_1$ by (11). Hence the second term is $< 8/N \cdot \epsilon_2 \cdot K_1$.

This finishes the proof of the lemma.

BIBLIOGRAPHY

1. D. G. Austin, On the existence of the derivative of Markoff transition probability functions, Proc. Nat. Acad. Sci. U. S. A. vol. 41 (1941) pp. 224-226.

2. ____, Some differentiability properties of Markoff transition probability functions, Proc. Amer. Math. Soc. vol. 7 (1956) pp. 751-761.

3. J. L. Doob, Topics in the theory of Markoff chains, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 37-64.

4. A. N. Kolmogoroff, On the differentiability of transition probabilities in stationary Markov processes with a denumerable number of states, Moskov. Gos. Univ. Uč. Zap. Mat. vol. 148 (1951) pp. 53-59 (Russian).

UNIVERSITY OF WISCONSIN