THE DIFFERENTIABILITY OF TRANSITION FUNCTIONS ${ }^{1}$

BY DONALD ORNSTEIN
Communicated by J. L. Doob, October 6, 1959

In this paper we prove that the transition functions of a denumerable Markoff chain are differentiable or equivalently: Given a matrix of real valued functions $P_{i j}(t)(i, j=1,2, \cdots) 0 \leqq t<\infty$ satisfying

$$
\begin{align*}
& P_{i j}(t) \text { is non-negative and continuous, } \tag{1}\\
& P_{i j}(0)=\left\{\begin{array}{l}
1 \text { if } i=j, \\
0 \text { if } i \neq j
\end{array}\right. \tag{2}\\
& P_{i j}\left(t_{1}+t_{2}\right)=\sum_{k=1}^{\infty} P_{i k}\left(t_{1}\right) P_{k j}\left(t_{2}\right), \tag{3}\\
& \sum_{j=1}^{\infty} P_{i j}(t)=1 . .^{2} \tag{4}
\end{align*}
$$

Our theorem is that $P_{i j}(t)$ has a finite continuous derivative for all $t>0$.

This result was conjectured by Kolmogoroff in [4].
Doob showed [3] that $P_{i j}(t)$ has a right hand derivative (possibly infinite) at $t=0$ and Kolmogoroff showed [4] that this derivative is finite if $i \neq j$, (if $i=j$ there are examples where it is infinite). Austin $[1 ; 2]$ showed that that $P_{i j}(t)$ has a finite continuous derivative for $t>0$ if either $P_{i i}(t)$ or $P_{j j}(t)$ has a finite derivative at 0 .

We will now give the proof ${ }^{3}$ of our theorem. We will think of the matrices $\left\{P_{i j}(t)\right\}$ as transformations on sequences in such a way that $\left\{P_{i j}(t)\right\}$ transforms the sequence with 1 in the m th place and 0 elsewhere into the sequence whose k th term is $P_{m k}(t)$. We will use letters like v to denote a sequence, T to denote a particular matrix and $T(v)$ to denote the sequence v transformed by the matrix T.

Our first step will be to show that $P_{11}(t)$ has bounded variation in some interval (say from 0 to t_{0}). To do this we will estimate $\sum_{i=0}^{N-1}\left|P_{11}\left(i t_{0} / N\right)-P_{11}\left((i+1) t_{0} / N\right)\right|$ for a fixed integer N. The estimate will turn out to be independent of N. To simplify notation we will let $T=\left\{P_{i j}\left(t_{0} / N\right)\right\}$ and let $f_{i}=P_{11}\left(i t_{0} / N\right)$.

We will first define a sequence of vectors (or sequences) $v_{i} . v_{0}$ will be the sequence with 1 in the first place and 0 elsewhere. Let us de-

[^0]denote by v^{*} the sequence whose first term is 0 and which agrees with v everywhere else. Define $v_{i+1}=\left(T\left(v_{i}\right)\right)^{*}$. We then have
\[

$$
\begin{equation*}
T^{s}\left(v_{0}\right)=\sum_{i=0}^{s} f_{s-i} v_{i} \tag{1}
\end{equation*}
$$

\]

This is easily verified by induction (note that the first coordinate of $T^{s}\left(v_{0}\right)=f_{s}$ by definition). We will define a sequence of positive real numbers $\beta_{i} . \beta_{0}=1-f_{1}$ and $\beta_{i}(i \geqq 1)$ is the first coordinate of $T\left(v_{i}\right)$. The following formula is also easy to check.

$$
\begin{equation*}
f_{s+1}-f_{s}=-f_{s} \beta_{0}+\sum_{i=1}^{s} f_{s-i} \beta_{i} \tag{2}
\end{equation*}
$$

(We must interpret $\sum_{i=1}^{0}$ as 0). Rewriting (2) we get

$$
\begin{gather*}
\sum_{s=0}^{N-1}\left|f_{s}-f_{s+1}\right| \leqq \sum_{s=0}^{N-1}\left|f_{s} \sum_{i=1}^{s} \beta_{i}-f_{s} \beta_{0}\right|+\sum_{s=0}^{N-1} \sum_{i=1}^{s}\left|f_{s-i}-f_{s}\right| \beta_{i} \tag{3}\\
\sum_{s=0}^{N-1} \sum_{i=1}^{s}\left|f_{s-i}-f_{s}\right| \beta_{i} \leqq\left(\sum_{s=0}^{N-1}\left|f_{s}-f_{s+1}\right|\right)\left(\sum_{i=1}^{N-1} i \beta_{i}\right) \tag{4}
\end{gather*}
$$

To see (4) note that

$$
\sum_{s=0}^{N-1} \sum_{i=1}^{s}\left|f_{s-i}-f_{s}\right| \beta_{i}=\sum_{j=1}^{N-1} \sum_{k=j}^{N-1}\left|f_{k-j}-f_{k}\right| \beta_{j}
$$

and

$$
\sum_{k=i}^{N-1}\left|f_{k-j}-f_{k}\right| \leqq i \sum_{s=0}^{N-1}\left|f_{s}-f_{s+1}\right|
$$

From (3) and (4) we get

$$
\begin{array}{r}
\sum_{s=0}^{N-1}\left|f_{s}-f_{s+1}\right| \leqq\left(\sum_{s=0}^{N-1}\left|f_{s}-f_{s+1}\right|\right)\left(\sum_{i=1}^{N-1} i \beta_{i}\right) \\
+\sum_{s=0}^{N-1} \mid f_{s} \sum_{i=1}^{\dot{s} \beta_{i}-f_{s} \beta_{0} \mid} . \tag{5}
\end{array}
$$

If we now assume that the t_{0} we used in defining T has the property that $P_{11}(t)>3 / 4$ for all $t<t_{0}$ we will be able to show that both $\sum_{i=1}^{N-1} i \beta_{i}$ and $\sum_{s=0}^{N-1}\left|f_{s} \sum_{i=1}^{s} \beta_{i}-f_{s} \beta_{0}\right|$ are $<1 / 2$. This and (5) will then immediately imply that $\sum_{s=0}^{N-1}\left|f_{s}-f_{s+1}\right|<1$ and, since $P_{11}(t)$ is
continuous and our estimate does not depend on N, that the variation of $P_{11}(t)\left(t<t_{0}\right)$ is \leqq. To get $\sum_{i=1}^{N-1} i \beta_{i}<1 / 2$ we note first that $\sum_{i=1}^{N-1} i \beta_{i}<\sum_{i=1}^{N}\left|v_{i}\right|(|v|=$ sum of the absolute values of the coordinates of v) since $\beta_{i}=\left|v_{i}\right|-\left|v_{i+1}\right|$. Next we show that $\sum_{i=1}^{N}\left|v_{i}\right|$ $<1 / 2$. $T^{N}\left(v_{0}\right)=f_{N} v_{0}+\sum_{i=1}^{N} f_{N-i} v_{i}$ and since row sums $=1$, $\sum_{i=1}^{N} f_{N-i}\left|v_{i}\right|=1-f_{N}<1 / 4$. Each of the $f_{N-i}>1 / 2$ so $\sum_{i=1}^{N}\left|v_{i}\right|$ $<1 / 2$. $\sum_{s=0}^{N-1}\left|f_{s} \sum_{i=1}^{s} \beta_{i}-f_{s} \beta_{0}\right|<1 / 2$ because $\left|\beta_{0}-\sum_{i=1}^{s} \beta_{i}\right|=\left|v_{s+1}\right|$.

We now know that $P_{11}(t)$ has variation <1 in a certain interval about 0 . The following argument shows that the variation of $P_{1 j}(t) \leqq 4$ in the same interval.

$$
\begin{align*}
T^{s+1}\left(v_{0}\right)-T^{s}\left(v_{0}\right) & =\sum_{i=0}^{s+1}\left(f_{s+1-i}-f_{s-i}\right) v_{i}, \quad\left(f_{-1}=0\right) \\
\sum_{s=0}^{N-1}\left|T^{s+1}\left(v_{0}\right)-T^{s}\left(v_{0}\right)\right| & \leqq \sum_{i=0}^{N} \sum_{s=i-1}^{N-1}\left|\left(f_{s+1-i}-f_{s-i}\right) v_{i}\right| \tag{6}\\
& \leqq \sum_{i=0}^{N} 2\left|v_{i}\right| \leqq 4
\end{align*}
$$

The remainder of the proof follows a suggestion of K. L. Chung. ${ }^{4}$ Functions of bounded variation have a finite derivative almost everywhere and we can therefore pick a $t_{1}<t_{0}$ such that $P_{1 j}(t)$ has a derivative at t_{1} for all j. For an arbitrary t_{2} the existence of a derivative for $P_{1 i}\left(t_{1}+t_{2}\right)(i=1 \cdots \infty)$ follows from the fact that

$$
\frac{P_{1 i}\left(t_{1}+t_{2}\right)-P_{1 i}\left(t_{1}+t_{2}+\alpha\right)}{\alpha}=\sum_{k=1}^{\infty} \frac{P_{1 k}\left(t_{1}\right)-P_{1 k}\left(t_{1}+\alpha\right)}{\alpha} P_{k i}\left(t_{2}\right)
$$

and the following lemma: given ϵ there exists an integer K such that

$$
\begin{equation*}
\sum_{j=K}^{\infty} \frac{\left|P_{1 j}\left(t_{1}\right)-P_{1 j}\left(t_{1}+\alpha\right)\right|}{\alpha}<\epsilon, \quad \frac{t_{1}}{4}>\alpha>0 \tag{7}
\end{equation*}
$$

We conclude by proving (7). For a given $\alpha<t_{1} / 4$ we will pick a t_{0}^{\prime} between t_{1} and $t_{1} / 2$ and an integer N such that $t_{0}^{\prime} / N=\alpha$ and we will define T and v_{i} as before, except that we will use t_{0}^{\prime} instead of t_{0}.

It is easy to show that given ϵ_{1} (we will pick ϵ_{1} to be $<(1 / 8) \epsilon \cdot t_{1} / 2$ $\cdot 1 / 2)$ there is a K_{1} such that $\sum_{j=K_{1}}^{\infty} P_{1 j}(t)<\epsilon_{1}$ for all $t<t_{1}$. We then have $\sum_{i=1}^{N}\left|v_{i}^{K_{1}}\right|<2 \epsilon_{1}\left(\left|v_{i}^{K_{1}}\right|\right.$ is the sum of the absolute values of the terms of v_{i} with index $\geqq K_{1}$). The same argument as the one used in (6) shows

[^1]\[

$$
\begin{equation*}
\sum_{s=1}^{N-1} \sum_{j=K_{1}}^{\infty}\left|P_{1 j}((s+1) \alpha)-P_{1 j}(s \alpha)\right|<4 \epsilon_{1} \tag{8}
\end{equation*}
$$

\]

There are at least $(N-1) / 2$ integers s such that

$$
\begin{equation*}
\sum_{j=K_{1}}^{\infty}\left|P_{1 j}((s+1) \alpha)-P_{1 j}(s \alpha)\right|<8 \epsilon_{1} \frac{1}{N} \tag{9}
\end{equation*}
$$

and for one of these, call it r,

$$
\begin{equation*}
\sum_{j=1}^{K_{1}}\left|P_{1 j}((r+1) \alpha)-P_{1 j}(r \alpha)\right|<\frac{8}{N} \tag{10}
\end{equation*}
$$

This follows from (6). We now pick ϵ_{2} (make it $<\epsilon \cdot(1 / 8) K_{1} \cdot t_{1 / 2} \cdot 1 / 2$). There is a $K>K_{1}$ such that

$$
\begin{align*}
\sum_{j=K}^{\infty} P_{i j}(t) & <\epsilon_{2} \quad \text { for all } t<t_{1} \text { and } i \leqq K_{1}, \\
\sum_{j=K}^{\infty} \mid P_{1 j}\left(t_{1}\right)- & P_{1 j}\left(t_{1}+\alpha\right) \mid \\
& \leqq \sum_{m=K}^{\infty} \sum_{j=1}^{\infty}\left|P_{1 j}(r \alpha)-P_{1 j}(r+1) \alpha\right| P_{j m}\left(t_{1}-r \alpha\right) \\
= & \sum_{m=K}^{\infty} \sum_{j=K_{1}+1}^{\infty}\left|P_{1 j}(r \alpha)-P_{1 j}((r+1) \alpha)\right| P_{j m}(t-r \alpha) \tag{11}\\
& +\sum_{m=K}^{\infty} \sum_{j=1}^{K_{1}}\left|P_{1 j}(r \alpha)-P_{1 j}((r+1) \alpha)\right| P_{j m}\left(t_{1}-r \alpha\right)
\end{align*}
$$

The first term of this last expression is $<8 \epsilon_{1} \cdot 1 / N$ by (9), $\mid P_{1 j}(r \alpha)-P_{1 j}\left((r+1) \alpha \mid<8 / N\right.$ by (10) and $\sum_{m=K}^{\infty} P_{j m}\left(t_{1}-r \alpha\right)<\epsilon_{2}$ for each $j<K_{1}$ by (11). Hence the second term is $<8 / N \cdot \epsilon_{2} \cdot K_{1}$.

This finishes the proof of the lemma.

Bibliography

1. D. G. Austin, On the existence of the derivative of Markoff transition probability functions, Proc. Nat. Acad. Sci. U. S. A. vol. 41 (1941) pp. 224-226.
2. -_ Some differentiability properties of Markoff transition probability functions, Proc. Amer. Math. Soc. vol. 7 (1956) pp. 751-761.
3. J. L. Doob, Topics in the theory of Markoff chains, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 37-64.
4. A. N. Kolmogoroff, On the differentiability of transition probabilities in stationary Markov processes with a denumerable number of states, Moskov. Gos. Univ. Ux. Zap. Mat. vol. 148 (1951) pp. 53-59 (Russian).

University of Wisconsin

[^0]: ${ }^{1}$ This research was supported in part by the United States Air Force under contract AF49(638)-265, monitored by the Office of Scientific Research.
 ${ }^{2}$ This condition has been eliminated by Professor Jurkat.
 ${ }^{3}$ I wish to thank Professor Chung for valuable aid and encouragement in the preparation of this paper.

[^1]: ${ }^{4}$ The original proof did not make use of the theorem that functions of bounded variation have derivatives almost everywhere and was very much longer. Professor Chung's idea also gives $P_{1_{i}}^{\prime}\left(t_{1}+t_{2}\right)=\sum_{k} P_{1 k}\left(t_{1}\right) P_{k i}^{\prime}\left(t_{2}\right)$. Professor Chung has also proved (in a different way) that $P_{1 i}^{\prime}\left(t_{1}+t_{2}\right)=\sum_{k} P_{1 k}\left(t_{1}\right) P_{k i}^{\prime}\left(t_{2}\right)$.

