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If <l>(x) is a continuous function on (— oo, oo) then we denote by 
V[</>] the number of variations of sign of <j>(x) on ( — oo, oo). A meas­
urable function G(x) on (— oo, oo) such that 

G{x) > 0, f G(x)dx = 1, 
J —00 

and such that 

V[G*<I>] S V[<f>] 

for every bounded continuous 0 will be called a variation diminishing 
•-kernel. Here 

(1) G * 4>- (x) = j G(x - y)<t>(y)dy. 
J —oo 

I. J. Schoenberg has proved that if G is a variation diminishing *-
kernel then 

£ G(x)e~ixtdx 

is of the form 

(2) Lc<2+*< H (i - . ! i \ ^/«*1 

where the ak's are real and ^2k <h2 is finite, 6 is real, and c is real and 
non-negative. Conversely every function of the form (2) is the Fourier 
transform of a variation diminishing *-kernel. See [8] and [9]. 

In the present note we will sketch an analogous theory in which 
certain convolutions of functions on (0; oo), associated with Hankel 
transforms replace the convolution (1). 

Let 7 be fixed, 0 ^ 7 . We define 

T(x) = 2 ^ / ^ ( 7 + \/2)xW-yJy-.m(x), 

M (a) = tf2rH/27+i/2r(7 + 3/2). 

Let L be the set of measurable f unctions ƒ (x) on (0, 00) for which 
So \f(%)\dv(x) is finite. For f£L we set 
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(3) r(t) = C°T(xt)f(x)dn(x). 

f*(t) is the Hankel transform (of index y) of f(x). Let 

23^/2 T(y + 1/2)2 

jD(x' y>z) = r ( )>i/' fo*)-**1^*. y. 2)2 Y _ 2 

where 4̂ (#, y, z) is the area of a triangle whose sides are x, y, z if there 
is such a triangle and otherwise is zero. If f(x) and g(x) are defined on 
(0, oo ) then we formally set 

ƒ
» oo | * o o 

I f(y)g(*)D(x, y, z)dp(y)dp(i 
0 •/ 0 

). 

It can be verified that if ƒ, gEI< then ƒ # g £ L and (ƒ # g)A =ƒ* -g* ; 
that is, the Hankel transform (3) behaves in regard to the convolu­
tion # exactly as does the Fourier transform with regard to ordinary 
convolution * on the real line. This convolution associated with the 
Hankel transform was discovered by Delsarte [3] and [4], See also 
the papers of Bochner [l] and [2] and the author [ô]. 

If \f/(x) is a continuous function on (0, oo) let V[\l/] denote the 
number of changes of sign of \[/(x) on (0, oo). A measurable function 
H(x) on (0, oo ) such that 

H(x) ^ 0, f H(x)d»(x) = 1, 
J o 

and such that 

V[H#+]£ V[*] 

for every continuous bounded function xf/ on (0, oo ) will be called a 
variation diminishing #-kernel. Our principal result is the following. 

THEOREM. If H(x) is a variation diminishing #-kernel then H* (t) 
is of the form 

<« ["?o+s)r 
where the ak's are real and X)* <h2 is finite, and where c is non-negative. 
Conversely every function of the form (4) is the Hankel transform of a 
variation diminishing §-kernel. 
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The demonstration of this result follows very closely the pattern 
established by Schoenberg. I t is to be noted that for 7 = 0, this theo­
rem is contained in Schoenberg^ theorem as a special case. 

Many important integral transforms can be reduced to the form 
ƒ =G * <j> where G is a variation diminishing *-kernel. Such transforms 
have a very extensive theory which is the subject of a book by D. V. 
Widder and the author [7], I t is evident that a parallel development 
can be carried through for the transforms g^=H#y{/. See also in this 
connection the paper by Fox [5], 
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