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1. Introduction. We consider dynamical systems (X, M), where X
is a C* vector field on a C* closed manifold M satisfying the following
conditions.

(1) There are a finite number of singular points of X, say
B, * - -, Br, each of simple type. This means that at each B;, the
matrix of first partial derivatives of X in local coordinates has eigen-
values with real part nonzero.

(2) There are a finite number of closed orbits (i.e., integral curves)
of X, say Bit1, * * *» Bm, €ach of simple type. This means that no
characteristic exponent (see, e.g., [2]) of 8;, 1>k, has absolute value 1.

(3) The limit points of all the orbits of X as {— + <« lie on the §..
In other words, denote by ¢, the 1-parameter group of transforma-
tions generated by X (as we do throughout this paper). Let

a(y) = limit set ¢:(y), w(y) = limit set ¢:(y), v E M.
- 1—w
Then for each ¥, a(y) and w(y) are contained in the union of the B..

(4) The stable and unstable manifolds of the B; (see §2 for the
definition) have normal intersection with each other. More precisely
for each 7 let W; be the unstable manifold and W7 the stable manifold
of B; and for xEW; (or W) let Wi, (or Wys) be the tangent space
of W; (or W¢) at x. Then for each 4, j if xEWN WY,

dim W; + dim W} — # = dim (Wi, N Wh).

See [5] for example for more details.

(5) If B;1is a closed orbit there is no y& M with a(y) =w(y) =8..

First we remark that systems satisfying (1)—(5) may be very im-
portant because of the following possibilities.

(A) It seems at least plausible that systems satisfying (1)—(5) form
an open dense set in the space (with the C! topology) of all vector
fields on M.

(B) It seems likely that conditions (1)—(5) are necessary and suffi-
cient for X to be structurally stable in the sense of Andronov and
Pontrjagin [1]. See also [6].

: ](A) and (B) have been proved for the case M is a 2-disk, [3] and
9].

1 Supported by a National Science Foundation Postdoctoral Fellowship.
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We expect to have more to say about this subject at another time.

It is true that conditions (1)—(5) are independent.

With (X, M) as above let ¢;=dim W;. Then if 1<k, ¢, is the num-
ber of eigenvalues associated to 8; with real part positive. Let a, be
the number of B;, 1<k with o;=¢q. If 4>k, o, is one more than the
number of characteristic exponents of 8; with absolute value greater
than one. Let b, be the number of 8;, >k, with o;=g¢.

The main goal of this paper is to prove

THEOREM 1.1. Let (X, M) be a system satisfying (1)-(5), K any
field, R, the rank of HY(M, K), and M,=a,+b,+bo1. Then M, and
R, satisfy the Morse relations

M 0
Ml"'M I_RO;
M;— My+ Mo = R, — R+ R,,

....................

o= R
o= R

2 (—DMe = (=1)x

k=0
where dim M =n and x is the Euler characteristic of M with respect
to K.

Theorem 1.1 contains the Theorem of El’sgol’c [4] which excludes
closed orbits. It also contains Reeb’s theorem [11] which excludes
singular points. However, both El’sgol’c and Reeb made the highly
restrictive assumption? that no orbit joined saddle points (i.e., B,
1<k with 0,570, n) or saddle type closed orbits (i.e., B8;, >k with
g;#1, n)

Also it follows from the following theorem which we prove else-
where that Theorem 1.1 includes the classical theorem of Morse [8]
for a function f on M with nondegenerate critical points.

THEOREM 1.2. If X =grad f, f a C* function on M with nondegener-
ate critical points, then X can be C* approximated by a C* field Y on
M such that (Y, M) satisfies (1)—(5) with no closed orbits.

2. Construction of the stable and unstable manifolds. 2.1. Suppose
B is a singular point of simple type of the C® system (X, M). Let &
be the number of eigenvalues associated to § with real part positive.
Then (e.g., [2, p. 330]) there is a # dimensional C* submanifold W of
M passing through B such that if x& W then a(x)=8. If k=0, let

% Reeb has asked me to note that his footnote 3, 2nd paragraph, of [11, p. 62] (that
this assumption is unnecessary) is incorrect
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W=8. Then W is tangent at 8 to the linear subspace of the tangent
space Mg of M at 8 defined by these % eigenvalues [2, p. 333]. Wis
called the unstable manifold of X at 8. Let R* denote Euclidean k-
space considered as a vector space. We will show that W is the image
of a continuous 1-1 onto map f: R¥—W, with f(0)=g, and f is C*
with Jacobian of rank % except at 0. Consider the new system X*
obtained by reversing the direction of each vector of X on M. Then
B is a simple singularity of X* and the above applies to yield the un-
stable (#—k)-dimensional manifold W* of X* at 8. Call W* the
stable manifold of X at B. Note W and W* have normal intersection
at 8.

2.2. Suppose B is a closed orbit of (X, M) of simple type. Let —1
be the number of characteristic exponents of 8 with absolute value
greater than one. Then ([7] or [13]) there is a k-dimensional C®
submanifold W of M passing through @ such that if x&W then
a(x)=B. If k=1 let W=p. Also W is tangent at each point y of 8 to
the linear subspace of M, defined by these £—1 characteristic ex-
ponents and the tangent vector of 8 at y. Call W the unstable mani-
fold of X at B. We will show there is a continuous 1-1 onto map
Jf: RE1XS1— W, with f(0X.S*) =8, and except along 0X.S! is C* with
Jacobian of rank k. Similarly to 2.1, one defines the stable manifold
W* of X at 8 whose dimension in this case is z—k-+1.

We now construct the map f of 2.1.

There exists® a differentiably imbedded (k—1)-sphere K in W,
which is everywhere transversal to X. Let .Sy be the unit sphere of
R¥ and h:Sy—K be a diffeomorphism. (A diffeomorphism is C*
homeomorphism with a differentiable inverse.) Let ¢¥; be the 1-
parameter group of transformations of R* generated by the vector
field Y(x) =x on R* For x&R*, x0, let t(x) be the unique ¢ such
that x/||x|| =¥ (x) ESo. Then let £(0) =8 and f(x) =d—iwmbee (x).
It is easy to check that f: R*—W thus defined has the desired prop-
erties.

To construct the map f: R¥!XS'—-W of 2.2, first let ¥ be the
vector field (x, 1) on R¥1X.S' Then if ¢, is the 1-parameter group
of transformations generated by Y we have y(x, 0) = (xet, £ mod 27).
Let R¥—1=R-1X0C R¥1XS!, and C be the unit ball in R¥1, dC=.S,.
Define ¢: R¥—1—R+-1 by g(x) =xe?" and let ¢:So=.S; for each integer 7.

Let Q be a surface of section (i.e., transversal to X, see [6]) locally
about a point of 8 in W, diffeomorphic to a (¢—1)-cell. Then [6]
the orbits of X define a diffeomorphism k: Q—Q in a neighborhood
of BNQ leaving BNQ fixed. There is® a closed k-cell B differentiably

3 By Liaponov theory for example.



46 STEPHEN SMALE [January

imbedded in Q, B = F, such that 4~1(F,) is contained in the interior
of B. Let hi(Fo)=F;, 150.

Let f be an orientation preserving diffeomorphism of a neighbor-
hood V, of Sy in R*! into a neighborhood of Fyin Q. Then extend f
to a neighborhood of U;5o .S; in R*~! into a neighborhood of U;5o F
in Q by the formula

(2.3) f(x) = bifgi(x), x2 € nbd. V; of S..

This makes sense for an appropriate choice of the V;’s. Now consider
the closed region U in R*! bounded by S, and S_;. We have defined
f in a neighborhood of the boundary dU of U. After restricting f to
a smaller neighborhood of d U, f can be extended to a diffeomorphism
of all of U into the region of Q bounded by Fy and F_;. This fact fol-
lows from arguments which are now standard in differential topology.
We won’t include them here. Then as in 2.3 we can extend f to a map
of all of C into B which is a diffeomorphism except at f(0) =8NQ.

Next define f on P= {\bt(x)lxe C, t<0} by the following: Let
7(x, 0) be the smallest positive number such that ¢ ¢ff—s(x, §) has 0
as its second coordinate in a fixed product structure Q XB,(x, §) € P.
Then let f(x, 0) =¢r@.0fP-o(x, 6). Define f: 0 X.S1—B by f(0X6) =4.

Consider now the surface of section S_;XS'=4 in R¥+1XS! and
its image under f. Restrict f to the closure of the bounded component
K of A. Finally extend f to all of R¥1XS! as follows. For y& R+}
XSt'—K let ¢(y) be the unique ¢ such that ¥y (yv)EA4. Then let
FO) =b—1yfdtay(¥). After a change of parameter near 4, f will have
our desired properties.

3. Implications of (1)—(5). Assume throughout this section that
(X, M) is given as in §1. If B, is a singular point then f;: R¥—W; is
as in 2.1. If B; is a closed orbit then f;: R¥-1 X S1—W; is as in 2.2,

LemmMmA 3.1, If xE M, a(x) =8, w(x) =B;, then dim W;=dim W, and
equality can occur only if B; is a closed orbit.

Proor. Clearly xEWNW; and by (4) we have that dim W;
+dim W} —n21. But dim W}=n—dim W; if B, is a singular point
and dim W}=n—dim W;+1 if §; is a closed orbit. Then 3.1 follows.

See [12] for the following.

LeMMA 3.2. Suppose Wi\ W)= & and xEW;. Then there exists a
cell neighborhood H of x in W; such that given 6>0, there is a yEW;
with d(x, ¥) <06 aend if dim W;=dim W, there is a subcell K of W;
such that H and K are within 6 in a C* metric.



1960] MORSE INEQUALITIES FOR A DYNAMICAL SYSTEM 47

Define 0W;= {limkm f,-(xk)lxk any sequence in R* with no Ips.}.
Then let 3?W;=9(0W;), etc. Note Cl W;= W, JIW..

Lemma 3.3. If WNW;#= &, dW,DW,.
This follows from 3.2.

LeMMA 3.4. Suppose dim W,=dim Wiy=dim W,. If WN\Wi#= &
and Wi\ W73 & then WO\ W= J.

ProOF. Let xE Wi\ W7; apply 3.2 using the fact that W.N\ W}
> & Since W and W} have normal intersection at x, it follows from
3.2 that WN\ W} .

LEmMmA 3.5. Suppose Wy N\Wi #&, k=1, ---, m. Then W,
#Ws; if j#k.

Proor. First note by 3.1, dim W;,,, =dim W;, and equality occurs
only if 8;,,, is a closed orbit. This implies we can restrict ourselves to
the case of the lemma where all the W,,’s are of the same dimension.
Then if W;,=W,,, k¥#j, 3.4 implies that W; N WZ.#,@’. This con-
tradicts condition (5).

LEMMA 3.6. If OW, N\ W= &, then there is a sequence Wy, » + -, W,
such that W, N\ Wegp1 5= S, Wy=W,,, and Ws=W,,.

Proor. Let a(W§)=lim,._, W5. Then it follows that Cl W,
Na(WE# . Let B;&Cl W,Na(W5). Then WN\ Wy . If j~v,
similarly let B ECl W,N\a(W). Induction and 3.5 yield 3.6.

Lemma 3.7. If OWNW;#= &, then OW,DW; and either dim W*
>dim W; or dim W;=dim W,, W\ W} = &, and B; is a closed orbit

This follows from 3.6, 3.5, 3.3, 3.1, and 3.4.

LEMMA 3.8. Each W; is an imbedded R? or RP—1X .S
This follows from §2, 3.7 and (5).

LeMMA 3.9. 0*W,= &, any < for large enough k.

If not there isa W;such that " W,N\W ;= &. By 3.7 then dW,;N\ W;
= (¥, contradicting 3.8.

4. On Morse theory. A version of one of the standard theorems of
Morse theory is stated in this section. The proof is a short well-
known argument using the exact cohomology sequence of a pair and
for example can be found in [10].

THEOREM 4.1. Let M be an n-dimensional topological space with
closed subspace L* for each integer p such that L*D L*~, and there
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exist integers a, b with L*= & and L*= M. Using any fixed cohomology
theory and coefficient field, assume dimension He(L?, L) is finite for
each p and q. Let By=dim HY(M) and M= D ', dim He(L’, L),
Then My and Bg satisfy the Morse relations

M, 2 B,,
Ml'—MogBl—BOQ
My — My + My = By — By + By,

2 (—DM = 3 (—1)*Ba.
k=0 k=0

5. Proof of the main theorem. Define K?=Ugimw;5, Wi. Thom in
[14] considers subspaces related to K? to prove the classical Morse
inequalities. By 3.7 it follows that the K? are closed sets. However,
examples show that K? has the following bad property. It may be
that for W;CK?, dW; is not contained in K*~!, To avoid this we
define a new structure on M.

We define by induction a sequence of closed subsets L; of M with
L;DL;, and L;=M for large enough 2. Define Lo= ¢, and if L;
has been defined, let L; be the union of all the W; whose boundary
lies in L; ;. It is immediate that L;DL;;, that L; is closed in M
and that L;— L, consists of a disjoint union of Wj. It follows from
3.9 that there is an integer b such that L,= M.

One can construct an example to show that the L; need not be
locally connected and that for WoCL;—L;, WiCLia, dim W,
=dim Wl.

LEMMA 5.1. Using Cech theory if M, is as in 1.1 then

b
M, = Y dim HY(L;, L;.).
=0
PRroOF. As noted previously L;—L;; consists of a disjoint union
of the W; and as 7 ranges from 0 to b all the W; are obtained. Denoting
cohomology with compact carriers by K%, since Hy(P—Q)=HP, Q)
for Cech theory, we have

b
3 dim H(Li, Liy) = Y, dim Hx(W,).
=0 all w;
Using 3.8 and Poincaré duality H{(W;) =Haim w;—o(W;). Further-
more dim Ho(W;) =1 for all j, dim H,(W;)=1 if B; is a closed orbit
and dim H,(W,) =0 otherwise. The lemma follows.
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Theorem 1.1 follows from 4.1 and 5.1.

6. An analogue of the main theorem. Suppose instead of a vector
field X on M, we just have given a C* diffeomorphism 4 on M which
satisfies certain conditions analogous to (1)—(5).

(1") There are a finite number of periodic points (i.e., x M such
that k?(x) =x for some integer p) of & of simple type (i.e., the differ-
ential of # at p has no eigenvalue of absolute value 1).

(3’) The limit points of all the orbits of % (i.e., {h”(x) I all integers
p} =orbit of x) are periodic points.

(4’) The “stable” and “unstable” manifolds of the periodic points
have normal intersection.

The previous theory extends to cover this case. In particular if
M, is the number of periodic points with ¢ eigenvalues having abso-
lute value greater than one, the Morse relations of 1.1 hold.

One can ask the corresponding questions of (A) and (B) of §1 for
the above situation.
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