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1. Introduction. We consider dynamical systems (X, M), where -ST 
is a C00 vector field on a C00 closed manifold M satisfying the following 
conditions. 

(1) There are a finite number of singular points of X, say 
ft, • • • , ft, each of simple type. This means that at each ft, the 
matrix of first partial derivatives of X in local coordinates has eigen­
values with real part nonzero. 

(2) There are a finite number of closed orbits (i.e., integral curves) 
of Xy say ft+i, • • • , ft», each of simple type. This means that no 
characteristic exponent (see, e.g., [2]) of ft, i>k, has absolute value 1. 

(3) The limit points of all the orbits of X as /—» ± <*> lie on the ft. 
In other words, denote by <f>t the 1-parameter group of transforma­
tions generated by X (as we do throughout this paper). Let 

a(y) = limit set<t>t(y), œ(y) = limit set <l>t(y)9 y G M. 
t—*—to t—*oo 

Then for each y, a(y) and co(y) are contained in the union of the ft. 
(4) The stable and unstable manifolds of the ft (see §2 for the 

definition) have normal intersection with each other. More precisely 
for each i let Wi be the unstable manifold and Wt the stable manifold 
of ft and for xE.Wi (or Wt) let Wix (or Wfx) be the tangent space 
of Wi (or Wt) a t x. Then for each i9 j if xE W^\ Wf, 

dim Wi + dim W* - n = dim (W^, H W*x). 

See [5] for example for more details. 
(5) If ft is a closed orbit there is no yC=.M with a(y) ==o)(y) =f t . 
First we remark tha t systems satisfying (l)-(S) may be very im­

portant because of the following possibilities. 
(A) I t seems at least plausible that systems satisfying (l)-(S) form 

an open dense set in the space (with the C1 topology) of all vector 
fields on M. 

(B) I t seems likely that conditions (l)-(S) are necessary and suffi­
cient for X to be structurally stable in the sense of Andronov and 
Pontrjagin [ l ] . See also [6]. 

(A) and (B) have been proved for the case M is a 2-disk, [3] and 
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We expect to have more to say about this subject at another time. 
I t is true that conditions (l)-(5) are independent. 
With (X, M) as above let or» = dim W{. Then if i^k, o\- is the num­

ber of eigenvalues associated to & with real part positive. Let aq be 
the number of &, i^k with <Ti = q. If i>k, Ci is one more than the 
number of characteristic exponents of /3» with absolute value greater 
than one. Let bq be the number of ft, i>k, with cr» = g. 

The main goal of this paper is to prove 

THEOREM 1.1. Let (X, M) be a system satisfying ( l ) - (5) , K any 
field, Rq the rank of Hq(M} K), and Mq = aq+bq+bq+i. Then Mq and 
Rq satisfy the Morse relations 

Mo è Ro, 

Mi - Mo è Ri - Ro, 

M2 - Mi + Mo â R* - Ri + Ro, 

£ ( - l ) * J f * = ( - l ) -x 

where dim M= w and x is the Ruler characteristic of M with respect 
toK. 

Theorem 1.1 contains the Theorem of Êl'sgol'c [4] which excludes 
closed orbits. I t also contains Reeb's theorem [ l l ] which excludes 
singular points. However, both Êl'sgol'c and Reeb made the highly 
restrictive assumption2 tha t no orbit joined saddle points (i.e., ft, 
iSk with o \ ^ 0 , n) or saddle type closed orbits (i.e., ft, i>k with 
<Ti7*l, n). 

Also it follows from the following theorem which we prove else­
where that Theorem 1.1 includes the classical theorem of Morse [8] 
for a function f on M with nondegenerate critical points. 

THEOREM 1.2. If X = grad ƒ, ƒ a C00 function on M with nondegener­
ate critical points, then X can be Cl approximated by a C°° field Y on 
M such that (F , M) satisfies ( l)-(5) with no closed orbits. 

2. Construction of the stable and unstable manifolds. 2.1. Suppose 
j3 is a singular point of simple type of the C00 system (X, M). Let k 
be the number of eigenvalues associated to ]8 with real part positive. 
Then (e.g., [2, p. 330]) there is a k dimensional C00 submanifold Woi 
M passing through /3 such that if xÇzW then a(x)=l3. If & = 0, let 

* Reeb has asked me to note that his footnote 3,2nd paragraph, of [ l l , p. 62] (that 
this assumption is unnecessary) is incorrect 



i96o] MORSE INEQUALITIES FOR A DYNAMICAL SYSTEM 45 

W=j8. Then W is tangent at j8 to the linear subspace of the tangent 
space Mfi of M at /3 defined by these k eigenvalues [2, p. 333]. W is 
called the unstable manifold of X at /3. Let 2?* denote Euclidean k-
space considered as a vector space. We will show that W is the image 
of a continuous 1-1 onto map ƒ: Rk—>W, with /(0) =j3, and ƒ is C°° 
with Jacobian of rank k except at 0. Consider the new system -X"* 
obtained by reversing the direction of each vector of X on M. Then 
j8 is a simple singularity of X* and the above applies to yield the un­
stable (n — k)-dimensional manifold W* of X* at /3. Call W* the 
stable manifold of X at /3. Note W and W* have normal intersection 
at/3. 

2.2. Suppose /? is a closed orbit of (X, M) of simple type. Let k — 1 
be the number of characteristic exponents of /3 with absolute value 
greater than one. Then ([7] or [13]) there is a ^-dimensional C00 

submanifold W of M passing through /3 such that if xÇzW then 
a(x) =j3. If & = 1 let W=p. Also TF is tangent at each point y of /3 to 
the linear subspace of -Mj, defined by these k — 1 characteristic ex­
ponents and the tangent vector of |8 at y. Call W the unstable mani­
fold of X at j3. We will show there is a continuous 1-1 onto map 
ƒ: Rk"lXS1-^Wf with ƒ (OX S1) =/3, and except along OXS1 is C00 with 
Jacobian of rank k. Similarly to 2.1, one defines the stable manifold 
W* of X at j3 whose dimension in this case is n — k + 1. 

We now construct the map ƒ of 2.1. 
There exists8 a differentiably imbedded (k — 1) -sphere K in W, 

which is everywhere transversal to X. Let S0 be the unit sphere of 
Rk and h: So—tK be a diffeomorphism. (A diffeomorphism is C00 

homeomorphism with a differentiate inverse.) Let ^* be the 1-
parameter group of transformations of Rk generated by the vector 
field Y(x)—x on Rk. For xÇzRk, XT^O, let t(x) be the unique / such 
that x/\\x\\=\l/t(z)(x)E.So. Then let jf(0)=/3 and ƒ(*) =<t>-t(z)h\pt(z)(x). 
It is easy to check that ƒ: i£*—» W thus defined has the desired prop­
erties. 

To construct the map ƒ: i ^ X S 1 - ^ of 2.2, first let Y be the 
vector field (x, 1) on Rk~1XS1. Then if \[/t is the 1-parameter group 
of transformations generated by Y we have \pt(x, 0) = (xe\ t mod 2w). 
LetR^^R^XOCR^XS1, and Cbe the unit ball in R*~l, dC=S0. 
Define q: Rk"1-^Rk~l by q(x) = xe2v and let (fSo = Si for each integer i. 

Let Ç be a surface of section (i.e., transversal to -X", see [6]) locally 
about a point of /Î in W, diffeomorphic to a (fe — l)-cell. Then [ó] 
the orbits of X define a diffeomorphism A: Q—>Q in a neighborhood 
of jSnÇ leaving j3P\() fixed. There is8 a closed fe-cell B differentiably 

By Liaponov theory for example. 
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imbedded in Q, dB = F0 such that hr1^) is contained in the interior 
of B. Lethi(Fo) = Fiti^O. 

Let ƒ be an orientation preserving diffeomorphism of a neighbor­
hood Fo of So in i?*"""1 into a neighborhood of F0 in Q. Then extend ƒ 
to a neighborhood of U^o Si in i?*-1 into a neighborhood of U^o <̂ 
in Q by the formula 

(2.3) f(x) = A-M*), * G nbd. F, of 5*. 

This makes sense for an appropriate choice of the TVs. Now consider 
the closed region U in i?*"""1 bounded by So and S~i. We have defined 
ƒ in a neighborhood of the boundary d U of £/. After restricting ƒ to 
a smaller neighborhood oidU,f can be extended to a diffeomorphism 
of all of U into the region of Q bounded by F o and F-i. This fact fol­
lows from arguments which are now standard in differential topology. 
We won't include them here. Then as in 2.3 we can extend ƒ to a map 
of all of C into B which is a diffeomorphism except at ƒ(())=/JO Q. 

Next define ƒ on P = {^<(#)|ffEC, *<0} by the following: Let 
T(X, 0) be the smallest positive number such that <t>T(wteyfil'-*(xt 0) has 0 
as its second coordinate in a fixed product structure (?Xj3,(#, 0 )£P , 
Then let ƒ(*, 0) =&<M>.fiMtf. 0). Define/: OX S1-*/? by /(OX0) =0. 

Consider now the surface of section S~iXS1~A in JS*~1XS1 and 
its image under/. Restrict ƒ to the closure of the bounded component 
K of A. Finally extend ƒ to all of Rk~lXSl as follows. For yGi?*-1 

X S 1 - ^ let t(y) be the unique t such that ^ ^ ( ^ G i , Then let 
ƒ60 ==<l>-t(y)f4'm(y)* After a change of parameter near A, ƒ will have 
our desired properties. 

3. Implications of (l)-(5). Assume throughout this section that 
(X, M) is given as in §1. If & is a singular point then ƒ<: Rk-+Wi is 
as in 2.1. If p4 is a closed orbit then ƒ<: - R ^ X S 1 - » ^ is as in 2.2. 

LEMMA 3.1. IfxÇzM, a(x) =&, co(x) =&, tó^ dim Wi^dim Wjand 
equality can occur only if j8y is a closed orbit. 

PROOF. Clearly xCzW<r\Wf and by (4) we have that dim Wi 
+dim Wf—n^l. But dim Wf = n —dim Wj if /3y is a singular point 
and dim W*~n—dim Wy+1 if j8y is a closed orbit. Then 3.1 follows. 

See [12] for the following. 

LEMMA 3.2. Suppose Wf\W^^0 and xGWj. Then there exists a 
cell neighborhood H of x in Wj such that given ô>0, there is a yÇzWi 
with d(x, y)<d and if dim Wi = dim W^ there is a subcell K of Wi 
such that H and K are within S in a C1 metric. 
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Define dWj = {limk^00fj(xk)\xk any sequence in Rk with no lps.}. 
Then let d2Wj = d(dWj), etc. Note CI Wi^WJJdWi. 

LEMMA 3.3. If Wf\ Wf^0, dWOWj. 

This follows from 3.2. 

LEMMA 3.4. Suppose dim W^ = dim WV=dim Wj. If WiC\Wl^0 
and WkC\Wf^0 then WiC\Wf^0. 

PROOF. Let xGWkC\Wf; apply 3.2 using the fact that WiC\W* 
5*0. Since Wk and Wf have normal intersection at x, it follows from 
3.2 that WiC\Wjy*0. 

LEMMA 3.5. Suppose Wikr\WfH1^0, jfe = l, • • • , m. Then Wik 

^W^ifj^k. 

PROOF. First note by 3.1, dim W»-fc+1^dim Wik and equality occurs 
only if Pik+1 is a closed orbit. This implies we can restrict ourselves to 
the case of the lemma where all the Wik's are of the same dimension. 
Then if Wih=Wip k^j, 3.4 implies that Wikr\Wf.^0. This con-
tradicts condition (5). 

LEMMA 3.6. IfdWyC\ Wô5é0, then there is a sequence Wiv • • • , Wim 

such that Wikr\ W^+^0, Wy=Wh, and Ws=Wim. 

PROOF. Let a(W*)=limt+-.»W*. Then it follows that CI Wy 

C\a{Wt)^0. Let &GC1 WyC\a(Wt). Then WjC\W*b^0. If J9*y, 
similarly let ft G Cl WyC\a{Wf). Induction and 3.5 yield 3.6. 

LEMMA 3.7. If dWir\Wj^01 then dWOWj and either dim W* 
>d im Wj or dim W^ = dim Wj, WiC\ Wf^0, and /?y is a closed orbit 

This follows from 3.6, 3.5, 3.3, 3.1, and 3.4. 

LEMMA 3.S. Each W{ is an imbedded Rp or R^XS1. 

This follows from §2, 3.7 and (5). 

LEMMA 3.9. dkWi9£0, any i for large enough k. 

If not there is a PPy such that dmWjC\Wj?±0. By 3.7 then 3WjC\ Wj 
9*0, contradicting 3.8. 

4. On Morse theory. A version of one of the standard theorems of 
Morse theory is stated in this section. The proof is a short well-
known argument using the exact cohomology sequence of a pair and 
for example can be found in [lO]. 

THEOREM 4.1. Let M be an n-dimensional topological space with 
closed subspace Lp for each integer p such that Lv~DLv~l, and there 
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exist integers a, b with La = 0 and Lb = M. Using any fixed cohomology 
theory and coefficient field, assume dimension Hq(Lp, Lp~l) is finite for 
each p and q. Let Bq = dim Hq(M) and Mq = ]£?~a dim Hq(Lr, Z/-1). 
Then Mq and Bq satisfy the Morse relations 

Mo è Bo, 

Mx - Mo è Bx - Bo, 

M2 - Mx + M o è B2 - Bx + Bo, 

5. Proof of the main theorem. Define Kp = \JdimW4£p Wi. Thorn in 
[14] considers subspaces related to Kp to prove the classical Morse 
inequalities. By 3.7 it follows that the Kp are closed sets. However, 
examples show that Kp has the following bad property. I t may be 
that for WiQKp, dWi is not contained in Kp"~1. To avoid this we 
define a new structure on M. 

We define by induction a sequence of closed subsets Li of M with 
i O ^ t - i and Li = M for large enough i. Define Lo~0, and if L^x 
has been defined, let Li be the union of all the Wj whose boundary 
lies in L t_i. I t is immediate that L,OL<_i, that Li is closed in M 
and that L»—-L^-i consists of a disjoint union of Wj. I t follows from 
3.9 that there is an integer b such that Lb = M. 

One can construct an example to show that the L»- need not be 
locally connected and that for WoCLi — L»_i, WxQLi^x, dim Wo 
= dim Wx. 

LEMMA 5.1. Using Cech theory if Mq is as in 1.1 then 

b 

Mq= £ d i m £ r « ( Z , , L i - i ) . 

PROOF. AS noted previously L< — L»_i consists of a disjoint union 
of the Wj and as i ranges from 0 to b all the Wj are obtained. Denoting 
cohomology with compact carriers by K\, since Hq

K(P — Q)~Hq{P, Q) 
for Cech theory, we have 

£ dim ff'(£<, Lw) - X dimffiTO. 
i«0 all Wj 

Using 3.8 and Poincaré duality Hq
K(Wj) =Hdim Wj-q(Wj). Further­

more dim Ho(Wj) = 1 for all j , dim Hi(Wj) = 1 if /3y is a closed orbit 
and dim Hp(Wj)—0 otherwise. The lemma follows. 
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Theorem 1.1 follows from 4.1 and 5.1. 

6. An analogue of the main theorem. Suppose instead of a vector 
field X on Af, we just have given a C00 diffeomorphism h on M which 
satisfies certain conditions analogous to ( l )-(5) . 

(1') There are a finite number of periodic points (i.e., x(~M such 
that hp(x) —x for some integer p) of h of simple type (i.e., the differ­
ential of h a t p has no eigenvalue of absolute value 1). 

(3') The limit points of all the orbits of h (i.e., {hp(x)|all integers 
p} = orbit of x) are periodic points. 

(4') The "stable" and "unstable" manifolds of the periodic points 
have normal intersection. 

The previous theory extends to cover this case. In particular if 
Mq is the number of periodic points with q eigenvalues having abso­
lute value greater than one, the Morse relations of 1.1 hold. 

One can ask the corresponding questions of (A) and (B) of §1 for 
the above situation. 
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