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A topological group G is said to be homotopy-abelian if the com
mutator map of GXG into G is nulhomotopic. Examples can be 
given2 of non-compact Lie groups which are homotopy-abelian but 
not abelian. The purpose of this note is to prove 

THEOREM. A compact connected Lie group is homotopy-abelian only 
if it is abelian. 

COROLLARY. If a Lie group is homotopy-abelian, then its maximal 
compact connected subgroup is abelian. 

Our proof depends on the theory of [ó]. Thus we consider the 
Samelson "commutator" product3 in the homotopy groups of G, 
which is trivial when G is homotopy-abelian. The product of a^wp(G) 
with j8G7TQ(G) is denoted by (a, f$)Ç:Trp+q(G), where p, a^ 1. If h is a 
homomorphism of G into another topological group then 

where h* denotes the induced homomorphism. Note that #* is an 
isomorphism if A is a covering map and p, a ^ 2 . Hence if two topo
logical groups have a common universal covering group then their 
higher homotopy groups are related by an isomorphism which is 
compatible with the Samelson product. Let <nrq(G), where g ^ l , 
denote the subset of w2q(G) consisting of elements ((3, fi), where 
fiCz7Tq(G). We assert the following 

LEMMA. Let G be a compact connected simple non-abelian Lie group 
of dimension n and rank I. Then a Tq(G) 5^0, where q = 2n/l — 3. 

The proof is by application of (2.2) of [ó]. We distinguish be
tween the classical and exceptional cases, beginning with the latter. 

Let G be one of the exceptional groups. Then n/l = p, an odd prime 
number, and G has no ^-torsion (see [3]). The mod p cohomology of 
G is an exterior algebra on a basis of I generators. There is one gener
ator y in dimension g, while the remainder are of lower dimension. I t 
follows from Proposition 6 on page 291 of [8] that y has a nontrivial 

1 Research supported in part by U.S. Air Force Contract AF 49(638)-79. 
2 Such as the 2-dimensional affine group (example suggested by H. Samelson). 
3 The theory of the Samelson product is given in [5], for example. 
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image under the homomorphism induced by some map of Sq into 
G. Thus y has nonzero index, in the sense of [ó], with regard to some 
element PÇzwq(G). By Borel's theorem4 the mod p cohomology of B, 
the classifying space of G, is a polynomial algebra on a basis of I 
generators which correspond under transgression to those of the ex
terior algebra. The generator x corresponding to y has a nontrivial 
image under the homomorphism induced by some map of Sq+1 into 
B. In the polynomial algebra let M denote the ideal generated by all 
the basis elements except x. If z is such a generator then 

dim z < dim x — q + 1 = 2(p — 1), 

and so (?sz(~M, where (P5 (s^O) denotes the Steenrod operator. Hence 
(?SMCM, by the Cartan product formula. This proves that (P^ÇfjM, 
since by the Adem relation [l ] we have 

G>P-2(pix = (p — \)(S>v~lx = (p - l)xp £E M. 

Hence (P 2, mod M, where c?*0, and so (9lx is significant with 
regard to /3, in the sense of [ó]. Therefore (/3, /3>?*0, by (2.2) of [ó], 
which proves the lemma when G is exceptional. 

If G is not exceptional then G is locally-isomorphic to one of the 
classical groups: 

SU {I + 1), 50(2/ + 1), Sp(l), 50(2/). 

I t is shown in §4 of [ó] that each of 

(TT2l+lU(l + 1 ) , O"7T4l-lS0(2l + 1 ) , 0-TT4l-lSp(l), 

contains elements of odd order, and it follows from (18.2) of [4] that 
the same is true of cr TTu-hS0{2T) ( / T ^ I ) . Furthermore 

TrSU(l + 1) « TrU(l + 1), (f ^ 2), 

under the injection, and so cr w2i+iSU(l+l) 5*0. Since the Samelson 
product is an invariant of the structure class this completes the proof 
of the lemma. 

To deduce the theorem we recall that a compact connected Lie 
group G is locally isomorphic to G', say, where G' is the direct product 
of an abelian group T with various nonabelian simple groups. When 
any of these latter are present there exists, by the lemma, some value 
of q such that a irq(G

f) 7*0 and hence a irq(G) 5*0. Thus G' = T if G is 
homotopy-abelian, and hence the theorem follows at once. A maximal 

4 See (7.2) and (19.1) of [2]. 
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compact connected subgroup of a Lie group is a deformation retract 
of the component of the identity [7], and so the corollary is an im
mediate consequence of the theorem. 
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