RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

A POLYNOMIAL CANONICAL FORM FOR CERTAIN ANALYTIC FUNCTIONS OF TWO VARIABLES AT A CRITICAL POINT ${ }^{1}$

BY N. LEVINSON

Communicated by Oscar Zariski, June 22, 1960
Theorem. Let $F(z, w)$ be analytic for small $|z|$ and $|w|$ and $F(0,0)$ $=0$. Then (Weierstrass Preparation Theorem)

$$
\begin{equation*}
F(z, w)=z^{k}\left[w^{m}+a_{1}(z) w^{m-1}+\cdots+a_{m}(z)\right] \Phi(z, w) \tag{1}
\end{equation*}
$$

where $\Phi(0,0) \neq 0$ and $a_{j}(0)=0$. Let the discriminant of the polynomial in w, in the bracket above, not vanish identically (so that there are no quadratic factors of F which are polynomials in w). Then there exists $\psi(\zeta, \omega)$ a polynomial in (ζ, ω) of degree m in ω and analytic functions $\gamma(z, w)$ and $\delta(z, w)$ such that $\gamma(0,0)=\partial \gamma / \partial z(0,0)=\partial \gamma / \partial w(0,0)=0$ and similarly for δ such that if

$$
\begin{equation*}
\zeta=z+\gamma(z, w), \quad \omega=w+\delta(z, w) \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\psi(\zeta, \omega)=F(z, w) . \tag{3}
\end{equation*}
$$

(Note that ψ is a polynomial in both variables.) An outline of the proof follows.

By [1] it is known that F can be transformed by use of (2) to the form of (1) with $\Phi=1$. Hence the case

$$
\begin{equation*}
F(z, w)=f_{0}(z) w^{m}+f_{1}(z) w^{m-1}+\cdots+f_{m}(z) \tag{4}
\end{equation*}
$$

where $f_{0}=z^{k}$ and $z^{k+1} \mid f_{j}(z) j \geqq 1$, can be considered.
Because of the hypothesis on F it can be shown that the resultant of $F_{z}=\partial F / \partial z$ and F_{w} does not vanish identically. Thus

[^0]\[

D(z)=\left|$$
\begin{array}{cccccccc}
0 & 0 & \cdots & 0 & f_{0}^{\prime} & 0 & \cdots & 0 \tag{5}\\
0 & 0 & \cdots & f_{0}^{\prime} & f_{1}^{\prime} & 0 & \cdots & m f_{0} \\
& & & & (m-1) & m f_{0} \\
f_{m-1}^{\prime} & f_{m}^{\prime} & \cdots & 0 & \dot{0} & & & \\
f_{m}^{\prime} & 0 & \cdots & 0 & 0 & & & \\
f_{m-2} & \cdots & 0 & 0 \\
f_{m-1} & \cdots & 0 & 0
\end{array}
$$\right| \neq 0
\]

for small $|z|>0$. Let the lowest nonvanishing power of z in $D(z)$ be z^{μ}. Let $P_{0}(z)=z^{k}$ and for $j \geqq 1$ let $P_{j}(z)$ be polynomials of degree $2 \mu+2$ such that $P_{j}-f_{j}$ has least power of z of degree at least $2 \mu+3$. Let the polynomial

$$
\psi(\zeta, \omega)=\zeta^{k} \omega^{m}+P_{1}(\zeta) \omega^{m-1}+\cdots+P_{m}(\zeta)
$$

Consider now the equation

$$
\begin{array}{r}
\psi\left(z+g_{0}+w g_{1}+\cdots+w^{m-2} g_{m-2}, w+h_{0}+\cdots+w^{m-1} h_{m-1}\right) \tag{6}\\
=P_{0}(z) w^{m}+f_{1}(z) w^{m-1}+\cdots+f_{m}(z) .
\end{array}
$$

Clearly

$$
\psi(z+g, w+h)=\psi(z, w)+g \psi_{z}(z, w)+h \psi_{w}(z, w)+R(z, w, g, h)
$$

where each term in the polynomial R is of degree at least two in (g, h). Hence (8) can be written as

$$
\begin{align*}
\left(g_{0}+w g_{1}+\cdots+\right. & \left.w^{m-2} g_{m-2}\right) \psi_{z}(z, w) \\
& \quad+\left(h_{0}+\cdots+w^{m-1} h_{m-1}\right) \psi_{w}(z, w) \tag{7}\\
= & \left(f_{1}-P_{1}\right) w^{m-1}+\cdots+\left(f_{m}-P_{m}\right) \\
& -R\left(z, w, g_{0}+\cdots+g_{m-2} w^{m-2}, h_{0}+\cdots\right)
\end{align*}
$$

Certainly the equation (7) will be satisfied if the coefficients of w^{j} on the left are set equal to those of w^{i} on the right except that $-R$ is kept with $f_{m}-P_{m}$ so that the $2 m-1$ equations obtained from (7) are

$$
\begin{align*}
& P_{0}^{\prime}(z) g_{m-2}+m P_{0}(z) h_{m-1}=0, \cdots \tag{8}\\
& P_{m}^{\prime} g_{0}+P_{m-1} h_{0}=f_{m}-P_{m}-R
\end{align*}
$$

Because of (5) and the coincidence of the early terms of P_{j} and f_{j}, the equations (8) can be inverted to give

$$
\begin{array}{ll}
g_{i}=z^{-\mu} \sum_{j=1}^{m} \alpha_{i j}(z)\left(f_{j}-P_{j}\right)-z^{-\mu} \alpha_{i m} R, & i=0, \cdots, m-2 \\
h_{i}=z^{-\mu} \sum_{j=1}^{m} \beta_{i j}(z)\left(f_{j}-P_{j}\right)-z^{-\mu} \beta_{i m} R, & i=0, \cdots, m-1 \tag{10}
\end{array}
$$

where $\alpha_{i j}$ and $\beta_{i j}$ are analytic in z. Next let $g_{i}=z^{\mu+1} u_{i}$ and $h_{i}=z^{\mu+1} v_{i}$. If

$$
\begin{aligned}
& R\left(z, w, z^{\mu+1} u_{0}+\cdots+z^{\mu+1} u_{m-2} w^{m-2}, z^{\mu+1} v_{0}+\cdots+z^{\mu+1} v_{m-1} w^{m-1}\right) \\
&=z^{2 \mu+2} \tilde{R}\left(z, w, u_{0}, \cdots, u_{m-2}, v_{0}, \cdots, v_{m-1}\right)
\end{aligned}
$$

then \tilde{R} is a polynomial in all variables of degree at least two in (u_{i}, v_{j}). Hence (9) and (10) become

$$
\begin{align*}
u_{i}+z \alpha_{i m}(z) \widetilde{R} & =\sum_{i=1}^{m} \alpha_{i j}(z) z^{-2 \mu-1}\left(f_{i}-P_{i}\right), \quad i=0, \cdots, m-2 \\
v_{i}+z \beta_{i m} \tilde{R} & =\sum_{i=1}^{m} \beta_{i j}(z) z^{-2 \mu-1}\left(f_{i}-P_{i}\right), \quad i=0, \cdots, m-1 \tag{11}
\end{align*}
$$

Since $\left(f_{i}-P_{i}\right) z^{-2 \mu-1}$ is analytic and vanishes at $z=0$, and since $u_{i}=v_{i}=0$ is a solution of (11) for $z=w=0$, it follows from the implicit function theorem that for small $|z|$ and $|w|$, (11) has an analytic solution $u_{i}(z, w), v_{i}(z, w)$.

The question of whether it was possible to extend the result of [1] to the form of a polynomial ψ in both variables (rather than in just one as in [1]) was asked of me by Felix Browder.

Reference

1. N. Levinson, A canonical form for an analytic function of several variables at a critical point, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 68-69.

Massachusetts Institute of Technology

[^0]: ${ }^{1}$ The preparation of this paper was supported by the Office of Naval Research.

