EXAMPLES OF p-ADIC TRANSFORMATION GROUPS

BY FRANK RAYMOND AND R. F. WILLIAMS ${ }^{1}$

Communicated by Deane Montgomery, June 11, 1960

1. Introduction. Our purpose here is to outline the construction of an n-dimensional space $X^{n}, n \geqq 2$, upon which the p-adic group A_{p} acts so that the orbit space X^{n} / A_{p} is of dimension $n+2$. Though such examples are new, it had been known $[1 ; 4]$, that either they do exist or a certain long standing conjecture on transformation groups must be true. The conjecture states that every compact effective group acting on a (generalized) manifold must be a Lie group; it may well be false.

Another question concerns the amount, k, by which the (cohomology) dimension of a compact space can be raised under the decomposition $\operatorname{map} X \rightarrow X / A_{p}$. By $[1 ; 4], k \leqq 3$. (An example in which $k=1$ is essentially due to Kolmogoroff [2].) No example is known for which $k=3$. The authors expect to have more to say on this subject.
2. The building blocks. There exists an ($n+2$)-dimensional complex X_{i}, a homeomorphism $h_{i}: X_{i} \rightarrow X_{i}$, maps $q_{i}: X_{i} \rightarrow s^{n+2}$ and $r_{i}: X_{i} \rightarrow X_{i}$ such that (S^{n+2} is the standard $n+2$-simplex)
(a) h_{i} is of period p^{i}.
(b) $q_{i}^{-1}(j$ skeleton $)=X_{i}(j)$ is a j-complex, $j=0,1, \cdots, n+2$.
(c) $q_{i} h_{i}=q_{i}$ so that q_{i} can be factored through the orbit space: $j=1, p, \cdots, p^{i-1}$

(d) $q_{i j^{*}}: H_{n+2}\left(X_{i} / h_{i}^{j}, X_{i}(n+1) / h_{i}^{j} ; Z_{p}\right) \rightarrow H_{n+2}\left(s^{n+2}, s^{n+2} ; Z_{p}\right)$ is onto; and
(e) $r_{i}: X_{i} \rightarrow X_{i}(n)$ is a retraction.
3. (E, π, B, X, q). Let m be a positive integer and s_{0} be the standard m-simplex. We consider 5 -tuples (E, π, B, X, q), where E, B, and X are m-complexes and π, q are simplical maps such that

A1. $\pi: E \rightarrow B, q: X \rightarrow s_{0}$,
A2. for each m-simplex $s \in B$, there are specified maps

[^0]\[

$$
\begin{aligned}
& \psi_{s}: X \rightarrow \pi^{-1}(s)=E_{8} \\
& \phi_{s}: s_{0} \rightarrow s
\end{aligned}
$$
\]

where ϕ_{s} is a linear homeomorphism;
A3. commutativity holds in the diagram

$$
\begin{aligned}
& X \xrightarrow{\psi_{s}} E_{s} \\
& q \downarrow \downarrow \pi \mid E_{s} . \\
& s_{0} \rightarrow s \\
& \text { 中 }_{s}
\end{aligned}
$$

A4. For s, s^{\prime} two m-simplexes of K,

$$
\psi_{s}\left|X_{s} \cap_{s^{\prime}}=\psi_{s^{\prime}}\right| X_{s} \cap_{s^{\prime}}, \quad \text { and } \phi_{s}^{-1}\left|s \cap s^{\prime}=\phi_{s^{\prime}}^{-1}\right| s \cap s^{\prime}
$$

where $X_{s \cap_{s^{\prime}}}=q^{-1} \phi_{s}^{-1}\left(s \cap s^{\prime}\right)$.
We need two results concerning such 5-tuples.
3.1. Given X, q, and a complex B which is the barycentric subdivision of a complex, there exists a complex E and a map $\pi: E \rightarrow B$ such that (E, π, B, q, X) satisfies A1-A4 and such that the ψ_{s} 's are homeomorphisms.
3.2. If in addition to $\mathrm{A} 1-\mathrm{A} 4$, we assume

A5. $H_{m}\left(X, q^{-1}(\dot{s}) ; G\right) \rightarrow{ }^{q *} H_{m}(s, \dot{s} ; G)$ is onto, then $H_{m}(E ; G)$ $\rightarrow H_{m}(B ; G)$ is onto.
4. The example. X^{n} is defined as the inverse limit of a sequence

$$
E_{0} \leftarrow \underset{\pi_{1}}{\leftarrow} E_{1} \leftarrow \pi_{2} E_{2} \leftarrow \cdots
$$

such that on each E_{i} (an ($n+2$)-complex) we have a map \bar{h}_{i} of period p^{i}. The E_{i} are defined inductively. E_{0} is taken to be a triangulated ($n+2$)-sphere, and $\bar{h}_{0}=$ identity. Suppose $E_{i}, \pi_{i}, \bar{h}_{i}$ have been defined. Then set $B_{i+1}=$ the barycentric subdivision of E_{i} and use 3.1 relative to $B_{i+1}, X_{i+1}, q_{i+1}$ (see §2), to obtain E_{i+1}, π_{i+1}. The homeomorphism \bar{h}_{i+1} is defined on E_{i+1} in terms of h_{i+1}, π_{i+1} and \bar{h}_{i}, so that we have the equivariance

$$
\pi_{i+1} \bar{h}_{i+1}=\bar{h}_{i} \pi_{i+1}
$$

Thus the map

$$
\left(e_{0}, e_{1}, \cdots\right) \rightarrow\left(\bar{h}_{0} e_{0}, \bar{h}_{1} e_{1}, \cdots\right)
$$

defines an effective action of the p-adic group on X^{n}.
It is next shown that $\bar{E}_{i}=E_{i} / \bar{h}_{i}, i=1,2, \cdots$ satisfy axioms

A1-A5 of §3, where $\bar{\pi}_{i}: E_{i} / \bar{h}_{i} \rightarrow E_{i-1} / \bar{h}_{i-1}$ is defined via (2c), and the ψ_{s} 's are essentially like the $q_{i j}$'s in (2c). By (3.2) all homeomorphisms in the sequence

$$
H_{n+2}\left(\bar{E}_{0} ; Z_{p}\right) \underset{\bar{\pi}_{1 *}}{\longleftarrow} H_{n+2}\left(\bar{E}_{1} ; Z p\right) \leftarrow \cdots
$$

are onto so that the orbit space, X / A_{p}, which is the inverse limit of the sequence

$$
E_{0} / \bar{h}_{0} \overleftarrow{\bar{\pi}_{1}} E_{1} / \bar{h}_{0} \underset{\bar{\pi}_{2}}{\leftarrow} E_{2} / \bar{h}_{2} \underset{\bar{\pi}_{3}}{ } \cdots
$$

is $(n+2)$-dimensional.
Finally, it follows from (2e) that X^{n} is n-dimensional.

Bibliography

1. G. E. Bredon, Frank Raymond and R. F. Williams, p-adic groups of transformations, to appear.
2. A. Kolmogoroff, Über offene Abbildungen, Ann. of Math. vol. 38(1937) pp. 36-38.
3. D. Montgomery and L. Zippin, Topological transformation groups, New York, Interscience, 1955.
4. C. T. Yang, p-adic transformation groups, to appear.

Institute for Advanced Study

[^0]: ${ }^{1}$ Both authors are National Science Foundation Fellows.

