
NEW RESULTS AND OLD PROBLEMS IN FINITE 
TRANSFORMATION GROUPS1 

P. A. SMITH 

We shall be concerned with the topology of finite transformation 
groups on spaces of relatively simple character. This represents a 
rather small corner in the general theory, but the problems which one 
finds here seem to be of some interest and difficulty. By disposing of 
various low-dimensional cases, we shall try to show where the real 
difficulties begin. 

1. Definitions. A transformation group (G, X) consists of a group 
G acting on a topological space X to form a group of homeomorphisms 
of X onto itself. I t will be understood throughout this paper that G 
is finite. For a given transformation group or "action" (G, X) and 
subset HQGy we denote by F(H\ G, X) the fixed-point set of H—that 
is, the points x such that hx = x for h<EzH. We may of course denote 
this set simply by F(H) when only one action is being considered. 
An action (G, X) is g-free if F(g) — 0, free if it is g-free when g?^l, 
and semi-free if F{G) — 0. Let Xr be the union of the fixed-point 
sets F(g), g ̂  1, and let X' = X - X\ Since gF(h) = F{ghg~l), the closed 
set Xr is invariant under the transformations x—»gx. Hence G acts on 
Xr (if Xr is not empty) hence also on Xf. The action (G, Xf) is free 
but the action (G, Xr) is not free. We call Xf the free part of X and 
Xr the restricted part; (G, Xr) may be called the restricted part of the 
action (G, X). An action (G, X) is effective if F ( g ) ^ X w h e n g^l. In 
a given action, the set N of elements g with F(g) =X is a normal sub­
group of G and there is induced an action (G/7V, X) which is effective. 

The sets Gx, x G Z , are the orbits of (G, X) . They form a decom­
position of X and the corresponding decomposition space, called the 
orbit space of the action, is denoted by X/G. The stability group Gx of 
x consists of all g such that gx = x. 

An action (G, X) is of c/ass C* if X is a manifold of class Ck and 
the functions x—>gx are of class Ck. When i = 0 we shall drop the 
manifold condition on X; every action is then of class C°. A differ-
entiable action is a enaction. (G, X) is orthogonal if X is a euclidean 
sphere or an open submanifold of a euclidean space and the trans-
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formations x—>gx are orthogonal. An action (G, X) which is of class 
Ck (or orthogonal) is triangulated if X carries a triangulation which is 
of class Ck (or orthogonal) and is compatible with the action. An 
orthogonal triangulation here means one in which the cells are sim-
plexes if X is a euclidean space, and geodesic simplexes if X is a 
euclidean sphere. 

2. Isomorphism classes. An isomorphism^: (G, X)—*(G', X') of two 
actions, both of class Ck or orthogonal, consists of an isomorphism 
G—>G' and a homeomorphism X—>X', of class Ck or orthogonal (both 
mappings being bijective) such that gx-+g'xf whenever g—»g', x—>x'. 
For a given G and X, the actions (G, X) of class Ck fall into isomor­
phism classes the totality of which we denote by P(Gt X). Let 
Ior(G, X) be the corresponding sets for orthogonal actions. Since every 
action and isomorphism of class Ck can be regarded as of class C°, we 
have a natural mapping P(G, X)—>I°(G, X). Similarly we have 
/ - ( G , X)->P(G, X). 

For each G, /fee mappings 

I°*(G, Sn) -> /*(G, 5») -> /°(G, 5») 

are bijective when n — 0, 1, 2. This is trivial for w = 0 and easy for n = 1 ; 
the proof for n = 2 is due to Kérékjârto [ l2] . 

The mappings Ior(Z2, Sn)-^I°(Z2, Sn) are not all surjective when 
n^3. Bing [ l ] , for example, has constructed an action (Z2, Sn) in 
which F(Z2) is a topological 2-sphere, and the free part of Sz is not 
the disjoint union of two 3-cells as it would have to be were the action 
isomorphic to an orthogonal one. Actions (Z2, Sn) not isomorphic to 
orthogonal ones and with arbitrarily large n, have been given by 
J. H. C. Whitehead [25]. On the other hand, Hirsch and Smale 
[lO] have shown that every action (Z2, 53) which admits exactly two 
fixed points2 is isomorphic to an orthogonal one and G. R. Livesay 
(not yet published) showed that the same is true of every free (Z2, S3). 
An example of Floyd [7] showed that Ior{Z^ S41)—»(I°(Z6, S41) is not 
surjective, in fact the image of Ior does not even contain all members 
of 1° which have triangulable representatives. In the triangulated 
action (Z6, 54i) constructed by Floyd, F(Z6) is not homeomorphic to 
a euclidean sphere. 

Call two orthogonal actions (G, 5») combinatorially isomorphic if 
they admit triangulations which are carried one into the other by 

2 Other supports can be used. Concerning the definitions and statements in this 
paragraph see [18] or [ l ; 19; 20]. 
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some (not necessarily orthogonal) isomorphism. It is easy to see that 
orthogonal isomorphism implies combinatorial isomorphism and 
hence we have a natural mapping Ior(G, Sn)—>IV(G, Sn) where If 
consists of the combinatorial isomorphism classes. These mappings 
are injective when G = Zm, m>l. This was proved by de Rham [16] 
for free actions and the general case follows readily. 

Not much more is known at present about the natural mappings 
of isomorphism classes. 

3. Joins. Two transformation groups (G, X), (G', X') determine in 
a natural way an action (GXG', X o X') on the join XoX'. If 
G~G' we may restrict the action of GXG to the diagonal of GXG 
and obtain an action (G, XoX'). We shall denote this action by 
(G, X) o (G, X'). 

The join o m o Sn of two euclidean spheres is homeomorphic to 
Sm+n+i* In fact one can assign the structure of a euclidean (tn+n + 1)-
sphere to Sm o Sn in such a way that (G, Sn) o (G, Sm) is orthogonal 
and uniquely determined up to (orthogonal) isomorphism. The 
multiplication defined by (G, Sn) o (G, Sm) is associative up to iso­
morphism. 

Suppose that G is abelian and (G, 5») orthogonal. Then from ele­
mentary properties of real representations there is a "decomposition" 

(1) (G, Sn) = (G, S) 0 (G, S') o • • • o (G, S™) 

where 5, S', • • • are spheres and where the factors are orthogonal 
and can not themselves be factored ; this decomposition is unique up 
to isomorphism and the order of the factors. The transformation 
groups and isomorphism in (1) can of course be regarded as being of 
class C°, but from the C° point of view it is not known whether 
uniqueness holds. The question of C°-uniqueness for the decomposi­
tion of free orthogonal actions (Zw, S V H ) , m > 2 , is essentially equiv­
alent to the problem of classifying lense spaces, which are the orbit 
spaces of such actions. De Rham [ló] showed that uniqueness does 
hold for such actions if "isomorphism" is taken to mean "combina­
torial isomorphism." This implies a combinatorial classification of 
lense spaces. 

The examples of Bing, Floyd and Whitehead in §2 show that not 
every abelian (G, Sn) (of class C°) has a decomposition (1) even if it is 
triangulable. I t is in fact doubtful that a decomposition necessarily 
exists in the differentiable case. For one reason, the sets F(g) for the 
right member of (1) with differentiable factors, are homeomorphic 
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to spheres whereas it is doubtful if this is true of the set F(g) for 
every differentiate action (G, Sn) although so far as the writer knows, 
no counter-example has been constructed. 

4. Effective actions in spheres. Let E\X) denote the totality of 
finite groups G such that there exist effective actions (G, X) of class 
Ck, and let Eor(X) denote the corresponding set for orthogonal ac­
tions. I t is known that E°(Sn) =Eor(Sn) when w = 0, 1, 2 but it is 
not known whether this is true when n>2. (We shall consider the 
case n = 2 in §7.) It should be remarked that while the members of 
Eor(Sn) can be listed when n^3 (Seifert and Threlfall [17]), this is 
not the case when n>3. We note also that every group G can act 
effectively on some S which has the same homotopy type as o». In 
fact let S = Sn\J(P o G) where p is a point of Sn and let (G, S) be 
defined by gx = x, xÇzSn, g(p o h) =p o gh. This action is effective, and 
5 is retractible to Sn by deformation. 

No example is known of an effective action (G, Sn) where G can 
not act effectively and orthogonally on Sn, and one might conjecture 
that no such action exists. At any rate, one can show that none exists 
in which G is an abelian p-group. This is a straightforward conse­
quence of the next proposition. 

By a homology n-sphere over A we shall mean a locally compact 
finite dimensional Hausdorff space X such that iJ*(X, A) = H*(Sn; A) 
where H* means cohomology with compact supports.2 I t is to be 
understood that So consists of two points and that the empty set is a 
homology ( —l)-sphere. If -XT is a homology w-sphere over Zpy p a 
prime, and if Zp acts on X, then F(ZP) is a homology m-sphere over 
Zp and — lSm^n; n — m is even if p>2. The example above shows 
that m can equal n even if the action is effective, but this possibility 
can be ruled out by imposing local conditions. Call X a generalized 
n-sphere over a principal ideal domain A if it is a homology w-sphere 
over A and a generalized w-manifold over A, A generalized 0-sphere 
over A consists of two points. If X is a generalized w-sphere over Zp , 
then for any action (Zp, X), F(ZP) is a generalized m-sphere over Zp 

and if the action is effective, m<n. If X is a homology w-sphere over 
Z2 and Hn(X; Z) is finitely generated, one can distinguish between 
actions (Z2, X) which preserve orientation and those which reverse 
orientation. If orientation is preserved then n — m is even. 

Let X be a generalized n-sphere over Zp, p a prime, and let 
G = ZPX • • • XZP , 5 factor s j act effectively on X. If p>2, then 
s^(n + l)/2. In any case s^n + 1. 

Suppose p>2. If s= 1, there is nothing to prove. Assume 5 ^ 2 . We 
shall show that there exist subgroups G^G^^'DG2^) • * * DG*""1, each 
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of index 1 in the preceding, and generalized spheres X = Xn
y 

Xn~1
1 • • • , X8~l 7*0 of strictly decreasing dimension such that G* 

acts on X1 (i.e. gXi = Xi whenever gÇzG1) and does so effectively. 
Suppose in fact that for some i with i<s — 1, G1, • • • , G* and 
X1, • • • , X* have been defined. The relation i < s - - l implies that 
Gl is noncyclic and therefore (G\ J?*) can not be free [22]. Hence 
there exist cyclic subgroups H of G* such that F(H)(==F(H\ G\ X1)) 
is nonempty. Among the cyclic subgroups H of Gl for which F(H) 
5^0 , let i ï 1 be one such that FÇH1) is maximal i.e. is not properly 
contained in some F(H). Take Gi+1 to be a nontrivial cyclic sub­
group of Gl such that G^HH1 = {1}, and take Z i + 1 to be F(Hl) 
noting that Xi+l9£0. Since G is abelian, G i+1 acts on Xi+1 and it only 
remains to be proved that ( G m , Xi+l) is effective. If not, there is a 
nontrivial cyclic subgroup H' of G*+1 leaving Xi+l pointwise fixed. 
This means that the fixed-point set of H', acting on X\ contains 
X*+\ i.e. that F^H^DF^H1). Hence by maximality, F(H') = F(H1) 
and therefore the nontrivial elements of H'H1 all have the same 
fixed-point set, namely F(Hl) and therefore [22] H'H1 is cyclic, 
hence Hf = H1. But this is impossible since H'QGi+1. Now the X's 
are generalized spheres over Zp, and each is the fixed-point set of an 
action on the preceding by a cyclic subgroup of G. The "dimensions" 
of the X's form a strictly decreasing sequence ending with that of 
X*-\ call it k. Then 0£k£n-(s-l), hence x^n + l. If p>2, the 
dimensions decrease by even jumps, hence 0 g J ^ w - 2 ( 5 - l ) , 
s£(n + l)/2. 

5. Groups of order pq. Let G(p, q, k) denote the nonabelian group 
of order pq defined by sq = tp=l, sts~1 = tk, with p, q distinct primes, 
p>2, JM1 , kq = l mod p. 

Call an action (G, X) regular if the sets F(g), g £ G , are manifolds. 
If (G, X) is regular and X is orientable, all the manifolds F(g) are 
orientable [20]. Consider an action (Gpq, Sn) where Gp = G(p, q, k). 
Let Sn and F(t) be oriented. Gpq acts on F(f) since the subgroup gen­
erated by t is normal. Call the action (Gpqt 5») concordant if 5 pre­
serves or reverses both orientations, agreeing that the orientation of 
F is preserved if F — 0. The action is necessarily concordant if q>2. 
Let r = dim F(t) agreeing that dim 0 = — 1 . Since p>2, n — r 
is even. A regular s-free action in which q — 2 is necessarily concor­
dant. 

Suppose G(p, q, k) acts regularly, effectively and concordantly on Sn. 
Then n = r mod 2q. The hypothesis of regularity can be omitted if the 
action is t-free. 

PROOF. Let F = F(t), and let 5» and F be oriented. To each trans-
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formation T: Sn—>Sn of period p having F as fixed-point set, there is 
associated [ l l ] , Appendix B an element of Zp, denoted by ind T, 
such3 that (1) ind Tk = frr-n)/2 ind T where r = dim F; (2) if 5 is a 
homeomorphism (Sn, F)—>(5W, F) which preserves or reverses both 
orientations, then ind (STS"1) = ind T. Let ind / = ind T where T is 
the transformation x—rtx. Then 

ind t = ind ses"1 = ind tk = k^r~n)l2 

so that k(r~n),2 = l mod p. Since kq = l mod p and k9*l, we see that 
q must divide (r — n)/2, hence r — n = 0 mod 2g. 

The preceding proposition restricts the cases in which effective 
action can occur. We mention the following instances: 

(a) If g > 2 , G(p, q, k) can act /-freely on Sn only if n + 1 = 0 mod 2q. 
(b) If q>2, G(p> q, k) can not act effectively and regularly on 

52, 53, 54. If there exists such an action on 5B it must be /-free. 
(c) If q>2y G(p, q, k) can not act differentiably and effectively on 

56 . For, suppose there is such an action. Since 6 — r ^ 2 g ^ 6 , and 6 — r 
is even, we have r = 0. Hence F(t) consists of two points. Since q is 
odd, both points are fixed under s. Hence F(Gpq)^0. (Gpq, 56) in­
duces an effective orthogonal action on the tangent vector space of 
any point of F(Gpq) hence an effective regular action of (Gpq, S$), 
which is impossible by (b). 

If q = 2, then k= — 1 and G(p, 2, —1) is the dihedral group G2p of 
order 2p. Milnor [13] showed that G2p can not act freely on any 5 n . 
Of course G2p can not act freely and orthogonally on Sn for the reason 
that since 5 is of order 2 and F(s) is empty, 5 would be represented by 
the matrix —I and would therefore permute with /. 

In the cases which have not been excluded by the preceding re­
marks, it is not known whether G(p, #, k) can act effectively on a 
given sphere. As Milnor remarked, the simplest unsolved case for 
free actions is the following. Can G(7, 3, 2) of order 21 act freely on 
5s? Zassenhaus [28] showed that G(p, q, k) can not act freely and 
orthogonally on any 5 n . 

In the case of actions which are not free, perhaps the simplest 
unsolved case is the following. Suppose (G2p, 54) is regular and con­
cordant. Then 4 = r m o d 4 , hence r = 0. Can this actually occur? 
Specifically, can the dihedral group of order 6 (i.e. G(3, 2, — 1)) 
act on 54 in such a way that F(s) = 0 and F(t) consists of two points? 
No such orthogonal action is possible.4 

3 (1) is not explicitly stated in [ l l ] but can easily be verified. 
4 A related question: let (G, Sn) be a differentiate action such that F(G) consists 

of two points x, y. Are the induced actions (G, Tx), (G, Tv) on the tangent vector 
spaces isomorphic? 



i960] FINITE TRANSFORMATION GROUPS 407 

Most of the results in this section remain true if Sn is an w-manifold 
which is an integral homology ^-sphere. I t remains true for example 
that the dihedral group can not act freely on Sn. On the other hand, 
recent results of Swan [24] show that such actions do exist on hom­
ology spheres which are not manifolds. 

6. Groups with periodic cohomology. It is well known [3, p. 358] 
that if G acts freely on a sphere of odd dimension n, then G has coho­
mology of period n + 1. This means that [3, p. 260] Ên+1+k(G; A) 
~Hk(G, A), fe = 0, 1, • • • for every coefficient module A. The only 
properties of the Hk which we shall need are the following [3, p. 
237, p. 250]: 

£°(G, Z) = Zd, d = [G: 1], 

Ê2(G, Z) = Horn (G/[G, G], Zd). 

It is assumed in these formulas that G acts trivially on Z. 
REMARK. If Ê°(G, Z) = Ê2(G, Z) with trivial action on Z, then 

G = Zrf. For, Hom(G/[G, G]t Zd)=Zd implies easily that G/[G, G] 
contains an element of order d and this in turn implies that G~Zd 
since G and Zd are both of order d. 

We shall need the following mild generalization of the theorem of 
periodic cohomology. 

Let X be an integral homology n-sphere and YC.X an integral homol­
ogy m-sphere with m^n — 2. If G acts on X in such a way that gY=Y 
for g G G and G acts freely on X' = X— F, then G has cohomology of 
period n — m. 

PROOF. There exists a spectral sequence Er [3, p. 354] or [18, 
Chapter IV] such that Ew is associated with the cohomology of 
the orbit space X'/G over a coefficient module A and E%'Q 

= HP(G, Hq(X', A)). Cohomology here is taken with compact sup­
ports and is reduced in the dimension 0. From the Künneth relations, 
Hn(X, A) =A, Hh(X, A)=0, h^n. Hence from the cohomology se­
quence for (X, Y) we have H*{X', A)=Hn(X'1 A)^Hm+1(X,

J A) 
= 4̂ 0^4. Thus El,q is nontrivial only when q = n, ra + 1. Using Er+i 
= H(Er) and the fact that dr is of bi-degree (r, 1—r), we find that 
Es»= • . . =Es; and £ | ' m + 1 = • • • =Es;m+1 where r = n-m, s = 0 , 
1, • • • . We have 

(1) dr :Er - » E r (s = 0, 1, • • • ). 

We assert that ds
r'

n is bijective when s^l. For, E^'™*1, p^n — mt 

evidently consists of permanent cocycles of total degree ^n + 1. But 
Eoo gives the cohomology of X'/G which can be shown to be trivial 
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in dimensions exceeding n (in order not to stop for this point we can 
assume that dim X = n in which case it is trivial). Let ^g£J + n " w ' w + 1 , 
By what has just been said, the image of x in Ex is zero. Assume 
XT^O. Then x must be "killed off" in passage to <*> which means that 
x has an image in some Etl t^r, of the form dty, y^O. Using the 
fact that dt is of bidegree (/, 1—/) we see that this can happen only 
if t — r and y(EEs

r'
n. I t follows that (1) is surjective. Suppose s>l. 

If (1) is not injective Es;n would contain a nonzero permanent co-
cycle, which, being of total degree z^n + l, must be killed off by an 
element in some E"'v where v>n whereas, all such elements being 
images of elements in EY are zero, which proves the assertion. I t 
follows from this and the fact that H8 = Ê8 when s^l, that Ê8(G, A) 
= Ên~m+8(G, A) for every A when s ^ l . I t must therefore hold also 
for 5 = 0 [3, p. 358]. 

Using the remark in the second paragraph of this section we have 
the following 

COROLLARY. If X is an integral homology n-sphere and (G, X) an 
action such that Xf = X — F(G) and if F(G) is an integral homology 
(n — 2)-sphere1 then G is cyclic. 

7. Actions on a generalized 2-sphere. Let Q be the set of orbits of 
an action (G, X) where X is finite (discrete). Since Ggx = gGxg~~l (§2) 
we see that [Gx: l ] is constant on each orbit co. Let *>(co) = [Gx: l]xe<a. 
Let N= [G: l ] and let </>(g) be the number of points in F(g). Then 

(1) E *(«) = N Z (1 - VKco)). 
flf^i wen 

This is shown by counting the number P of pairs (g, x) such that 
g 5^1, gx — x. There are <f>(g) x's paired with each g 5^1, hence the left 
members of (1) equals P . For x in a given orbit co, there are v(co) — 1 
g's paired with x; hence to co there correspond (v(œ) —-l)n(oû) pairs 
where n(oS) is the number of elements in co. Now n(co) equals the 
number of cosets of Gx, x£fc>, hence n(co)v(oo) =N. Hence the number 
of pairs corresponding to co is N(v(cS) — l)/v(co) and therefore P equals 
the right member of (1). 

Let G act on a finite set X such that F(g) consists of a single point 
when g^l and each Gx is nontrivial. Then X consists of just one point. 

For, with <j>(g) = 1, g ^ l , (1) becomes 

(2) 1 - 1/2V = E (1 - 1A(«)). 

GX7& {1} implies v(o)) ^ 2 for every co. Hence the right member of (2) 
is > 1 if there are two or more terms in the sum whereas the left 
member is smaller than 1. We conclude that there is just one orbit co 
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and that *>(co) = iV. Hence GX = G for each x so that F(G) = X. There­
fore F(g) = X for every G, hence X consists of one point. 

Consider now the subset Erot(S2) of Eor(S2) consisting of those 
groups which can act effectively as rotation groups on 52. 

If there exists a (G, X) with finite X such that every Gx is cyclic and 
nontrivial and every F{g), g^ 1, consists of two points, then GG-Ë1"0*^). 

In fact, a classical argument [27, p. 17] based on (2) shows that 
if (G, X) has the stated properties then (G, X) can be identified with 
the restricted part (§1) of an effective action of G in S2, in which the 
transformations x—>gx are rotations. 

Let X be an integral homology 2-sphere. If the restricted set Xr of an 
action (G, X) is finite and each set F(g), g<£zG, is nonempty, then G is 
a member of E ro t(S2). 

I t is sufficient to show that the restricted part (G, Xr) satisfies the 
hypothesis of the preceding proposition. Let g be an element of G of 
prime order p. Then F(g) is a homology 0-sphere over Zp . But as a 
subset of Xr, F(g) is finite and therefore consists of exactly two points. 
I t follows readily that every F(g), g^l, consists of two points. Since 
each point in Xr is fixed under some g 3^1, Gx is nontrivial when 
x £ X r . I t remains to be shown that Gx, x £ X r , is cyclic. Let x be a 
point in Xr, and consider the action (Gx, X) . Let Xr

x be the restricted 
part of X in this action. Evidently xÇzXr

x and Gx acts on the set 
Xf = Xr

x — {x} which is nonempty. Each element of Gx different from 
1 leaves just two points of X fixed, one of which is x, hence leaves one 
point of X' fixed. Moreover, if x ' £ X ' then at least one g in Gx differ­
ent from 1 leaves x' fixed. Therefore by the first proposition in this 
section X' consists of a single point and so in the action (Gx, X), 
F(GX) consists of two points and is therefore an integral homology 
0-sphere. Moreover, the free part of X in this action is X — F(GX). 
Hence by the corollary in §6, Gx is cyclic. 

COROLLARY. If G acts effectively on an integral generalized 2-sphere 
so that the transformations x—>gx preserve orientation, then G is a mem­
ber of E r o t(52). 

8. Cyclic actions on 3-spheres. Let L be the restricted part of Sz 

for an action (Zm, Sz) and assume that L is the disjoint union of k 
simple closed curves, k^l. If the action is orthogonal, k is either 1 
or 2. This remains true if orthogonality is replaced by the hypothesis 
that each component / of L is unknotted in the sense that iri(Sz-~ J) 
= Z. Whether or not a component of L can actually be knotted is an 
open question; Montgomery and Samelson [14] have shown that 
certain types of knots are not possible. 
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Let m = pqr where p, q, r are distinct odd primes and let Jp — F(Zp), 
etc. If Jp, Jqj Jr are disjoint simple closed curves, each is knotted. 

PROOF. Zm acts on each J*. Suppose that Jp is unknotted: 7Ti(U) = Z, 
U = S — JP, 5 = .S3. The universal covering Ü of U is a 3-manifold 
which is aspherical since U is aspherical [15], hence is acyclic with 
respect to integral homology. Hence the fixed-point set of any trans­
formation Ü—+Ü of odd prime period is a nonempty manifold of 
dimension r where 0^r<3 and 3 — r is even; hence r = l. The fixed-
point set will moreover be connected and noncompact and is there­
fore a line, i.e. a topological image of E\. Let 0 be the projection 
Ü—+U and let Jq = 4>~1Jq, J r = <^_1/r. Let xÇzJq. We can think of Ü 
as consisting of the equivalence classes of paths in U based at x. 
There is an obvious action of Zq on Ü defined by the action of ZQ on 
these paths. Since Jq, Jr are invariant under Zp, so are Jq> Jr (Jr for 
example consists of the equivalence classes of paths based at x and 
ending at points of Jr, and is therefore invariant). Now each com­
ponent K of Jq is a line or a simple closed curve. But K can not be 
a s.c.c. because 4>K} which equals Jqi would be null-homotopic in U, 
hence in the action of Zq on [7, Jq would be an invariant s.c.c. which 
bounds in U, and no such curve exists.5 Now Zp acts on the equiva­
lence classes of loops in U based at x, namely on TTI(U) —Z and since 
q is odd, this action is trivial. These loops can be thought of as giving 
the points % which cover x. Hence Zq leaves each cover % of x fixed. 
Each component K of Jq contains an % and is therefore invariant un­
der Zq. Thus Zq acts on K and since q^2 and J? is a line, the action 
is trivial. We conclude that each point of Jq is fixed under Zq. Con­
versely, a point of Ü fixed under Zq must cover a point of Jq, hence 
is in Jq. Thus Jq is the fixed-point set of Zq acting on Ü, hence is a 
line. In the same way, Jr is a line. But Zq acts on Jr and q being odd, 
the action is trivial. Hence Jr consists of fixed points of Zq hence JrC.3q 
which implies JrCJq, a contradiction. 

9. Acyclic spaces. No nontrivial finite group can act freely on a 
euclidean space or on a closed euclidean ball. The situation with 
regard to semi-free actions on such spaces stands about as follows, 
(a) Greever [9] showed that no group of order less than 60 and differ­
ent from 36 and no abelian group of order less than 210 can act semi-
freely on a closed ball; (b) Floyd and Richardson [8] showed that 
there exists a triangulable semi-free action of A g on a closed ball of 

6 The existence of such a curve together with the fact that Hn{ U, ZP) = 0 for 
n > 2 would imply the existence of a fixed point for the action (ZPi U) by essentially 
the same argument as used in the proof of Theorem 1(a) in [21 ]. 
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suitably high dimension, where A$ is the group of even permutations 
on 5 letters, hence of order 60; (c) for m ^ 2 , Zm can not act semi-
freely on En if # ^ 4 ; (d) there exists no differentiable semi-free action 
Zpq on En if p, q are primes and n^6; (e) there exists an orthogonal 
semi-free action of Zpq on a contractible submanifold of En where 
n is a suitable multiple of pq (Conner and Floyd [4]). 

We shall sketch the proofs of (c), (d) in this section and (e) in the 
next. 

(c) By a one point compactification, a given action (Zm, En) in­
duces an action (Zm, Sn) m which 00 Ç£F(Zm). I t is sufficient to show 
that in any action (Zm, Sn) with ^ ^ 4 , F(Zm) can not consist of just 
one point. This is trivial for n — 0, easy for n=l, 2 and straightfor­
ward for n = 3. Consider an action (Zm, S4). We may assume [2l] 
that m is not the power of a prime. Then Zm contains a subgroup 
Zp where p is a prime different from 2. Then F(ZP) consists of two 
points or is a homology 2-sphere over Zp. In the second case, enough 
local properties of F(ZP) can be established to ensure by a theorem of 
Wilder [26, Theorem 4.23, p. 223] that it is homeomorphic to 52. 
Thus F(ZP) is homeomorphic to S where S = SQ or S2. Now Zm acts 
on 5 and the fixed-point set of Zm in 54 is identical with the fixed-
point set of Zm in S^ hence can not consist of just one point. 

(d) We shall sketch the proof of a proposition from which (d) fol­
lows readily: 

Let Zpq act differentiably on En and assume that F(Zp)y which is a 
differentiable submanifold of En, is of dimension n — 2. Then F(Zpq) 
?*0. 

Let F = F(ZP). The closed differentiable (n — 2) -manifold F is ori­
entable, connected, and noncompact. Duality relations show that 
Hi(En — F\ Z)=Z. We consider the linking numbers /(£, A) where 
£ is an arbitrary integral singular 1-cycle in En — F and A an integral 
infinite fundamental (n — 2)-cycle for F. The integer /(£, A) depends 
only on the homology class of £ in Hi = Hi(En — F, Z). If t(E:Hi and 
g £ Z p , then gt = et when |e | = 1 ; —1 can only occur if p — 2. Hence 
J(g£> A) =e/(£, A) so in any case Z(g£, A) =/(£, A) mod p, and (<r?,A) 
= 0 mod p where cr = l + g + • • • +gp~1. Call a Z^-invariant 1-cycle 
in En — F simple if it is expressible as VOL where da — x — gx, x a point, 
g ^ l . If 771, rj2 are simple 1-cycles then l(rji, A)=l(rj2t A) mod p. For 
say r]i = <Tai, dai = Xi — gXi. Let /3 be a 1-chain in En — F such that 
dft — X2 — Xi. Then 771— 2̂==crf" where £* is the cycle a\—a2+j8—g/3. 
Hence /(rçi—772, A) = 0 mod £. Now Z p acts on JF and F is connected. 
Hence there are simple cycles in F. Let \x be one. If FC\F(Zq) — 0, 
then pCEn — F. On the other hand, H\(F(Zq)} Zq) = 0 and therefore 
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the homology class of /x (or any integral 1-cycle in En — F) is divisible 
by arbitrarily large multiples of p. The same is true of /(/x, A) which 
implies that /(//, A ) = 0 . On the other hand, it follows easily from 
differentiability that there exist simple cycles j8 in En — F near F 
such that Z(j8, A) = 1. Then since Z(/x—j3, A) = 0 mod p we have l(fi) 
= 0 mod p which is impossible. I t follows that FC\F(Zq), which 
equals F{Zpq), is not empty. 

QUESTION. Can F(Zpq) be compact? (F(ZP) and F(Zq) are not.) 

10. Semi-free actions. Let Xq be finite dimensional and acyclic 
with respect to homology over Zq. Let p, q be primes. Although there 
exists no semi-free action (Zp, Xq) when p = q, the following example 
shows that such actions may exist when p?*q. 

Let C be a circle with angular coordinate 6 and {mk} the mapping 
C—>C of degree mk given by 0—>rnk9. Let pm be the rotation 6—*0 
+ 2ir/m. For t^O let [t] be the largest integer ^t. On the semi-
infinite cylinder W2 — CX [0, oo) the sets ({m[t] }~~}c, t), CÇLC^ form a 
decomposition defining an equivalence em. Let W^ = W2/em and con­
sider the subsets W(t) = (CXt)/emy W[t, s) = (CX D, s))A™ etc. of W£. 
For & = 0, 1, • • • , W[k, k + 1) is retractible to W[* + l ] by a de­
formation which maps every W(t)t / £ [k, k + 1) onto W(k + 1) with 
degree m. I t follows readily that W% is acyclic over Zm. The rotation 
(c, t)—^(pnct t) of W2 induces an action (Zw, W^) which is obviously 
free if m is prime to nt as we now suppose. An easy triangulation 
makes this action simplicial. W%, which is now an infinite 2-complex 
can be imbedded in E3X • • • X-Ey (n factors, j sufficiently large) 
in such a way [7] that (Zn, W%) is induced by a simplicial orthogonal 
action (Zw, £yX • • • XJSy) where g(x, y, • • • , z) = (y, • • • , z, x), g a 
generator of Zw. The group iCn acts freely on the regular neighborhood 
Uof W2 a n d the action (Z», Z7) is orthogonal (§1). Since C/is retracti­
ble to W% by deformation, it is acyclic over Zm. 

A similar construction by Conner and Floyd [4] gives the semi-free 
action in (e), §9. We retain the notation of the preceding paragraph. 
If the segment x o y in C o C is subdivided into three segments of 
equal length, there is a unique piece wise linear mapping of x o y 
onto the 1-chain ({mh}x) oy — xoy+xo {nh}y, and the totality of 
these mappings for all segments xoy gives a mapping {m, n} : C o C 
—>Co C which is of degree m — 1+n. Thus {m, n] is of degree 0 if 
m+n = l as we now suppose. On the semi-infinite cylinder W4 

= (Co C)x[0,oo) , the sets ({mI i ], n{t^}~lcy t) form a decomposition 
of W* defining an equivalence cmn. Consider the subsets W(s, t) etc. of 
W*». For 0 = 0, 1, • • • , W[k, k + 1] is retractible to W[k + 1) by a 
deformation which maps W(t)9 J £ [k, k + 1) onto W(k + 1). Now 
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W(t) and W(k + 1) are canonically homeomorphic to Co C and the 
maps W(t)—>W(k + l) are readily identifiable with {m, n] and hence 
are of degree 0. It follows that for fe = 0, 1, • • • , W[kf k + 1) is de-
formable on W\k, & + l ] to a point and one can infer from this that 
Wmn is homotopically trivial, hence contractible. Now let p, q be 
distinct primes. Then the integers can be chosen congruent to 1 mod­
ulo p and q respectively (still with m+n — 1). In this case the trans­
formation (c, t)—>((ppQpq)c, t) of WA of period pq induces an action 
(Zpq, Wmn) which is semi-free and, as in the preceding paragraph, 
this leads to a semi-free orthogonal action (Zpqi U) where U is 
contractible (and dim U is a multiple of pq). 

QUESTION. What is the smallest dimension U can have in such an 
action ? 

11. Orbit spaces. Let (G, X) be an effective action. Floyd showed 
[5; 6] that if X is acyclic, one can expect the orbit space X/G to be 
acyclic. More specifically, if X is a locally compact Hausdorff space 
and if the compactly supported integral cohomology of X is trivial, 
the same is true of X/G. 

In general, however, the computation of the cohomology of X/G 
appears to be complicated. Let p be a prime In the following proposi­
tion we denote by P (X , t) the Poincaré polynomial of X for com­
pactly supported cohomology over Zp and by Q(a, b) the polynomial 
ta+ta+l + • • • +tb. 

Let G = ZPXZP and let X be a homology n-sphere over Zp, p a prime, 
and let G act effectively on X. Let Zpi i— 1, • • • , p + 1, be the non-trivial 
cyclic subgroups of G and let ni = dimp F(ZP), i*tl and no = dimp F(G). 
The Zp-cohomology of the orbit space of the free part of the action is given 
by 

P+i 

(1) (1 - t)P(X'/G, 0 = E Q(no + 2, m + 1) ~ Q(n0 + 2, n + 1) 

which can be solved explicitly: 

P+I 

(2) P(X'/G, t) - *»»+* Z 0(0, qx+ •••+ qi-i - 1)£(0, qt - 1) 

where qi = ni — no. Putting t=l in (2) gives 

P+I 

(3) X) (»< — »o) = n — n0. 

A formula like (1) for higher powers of Zp has apparently not yet 
been obtained although a recursion formula has been conjectured 



414 P. A. SMITH [November 

[23]. Borel [18] however showed that the dimensional relations (3) 
hold with rii, i^l defined to be dimp FiG1) where G1, G2, • • • are 
the subgroups of index p. 

A N APPLICATION. Let (Z2, Pn) be an effective action where Pn is 
projective n-space. Then F{Z2) is empty or else has two components A\ 
and A2 where Aiis a homology projective n-space over Z2(i.e. H*(Ai, Z2) 
= H*(Pni, Z2)), and ni+n2 = n — l. 

Suppose in fact that F{Z2) 7*0. Then there exists a covering action 
(Z2, Pn) on the universal covering Pn = Sn of Pn (cf. the proof in §8) 
such that gx covers gx when x covers x. Let g be the nontrivial ele­
ment of Z2. The transformation x—>gx permutes with the deck-
transformation /: Pn—*Pn and hence g, t define an action (Z2XZ2l Pn) 
whose fixed point sets we denote by P. Of course P(t)=0 so 
F ( Z 2 X Z 2 ) - 0 . Then F(Z2XZ2) , P(t), P(g), P(tg) are homology 
spheres over Z2 of dimensions — 1, — 1, Wi, n2 respectively and by 
the preceding proposition we have ni-\-n2 — n — \. Now if x in Pn is 
fixed under g, then <jrlx~ (x, tx) (where </> is the projection Pn-^Pn) 
is invariant under g so that either gx = x or gtx = x. I t follows that 
F(g) =<I>(F(g)\JF(gt)). Now F(g)nP(gt) CF(ggt) = F{t) = 0 and in fact 
tP(£)^F(gt) =z0 since tP(g) = P(g). Hence F(g) in the disjoint union 
of <l>P(g) and <t>P{gt), which may be regarded as orbit spaces of free 
actions of Z2 on the homology spheres P{g), P{gt) of dimensions n\ 
and n2l hence have the stated cohomology. 

QUESTION. IS this proposition true if it is assumed only that Pn 

is a homology projective space over Z2? 
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