RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

POLYHEDRAL HOMOTOPY-SPHERES

BY JOHN R. STALLINGS ${ }^{1}$
Communicated by Edwin Moise, July 18, 1960

It has been conjectured that a manifold which is a homotopy sphere is topologically a sphere. This conjecture has implications, for example, in the theory of differentiable structures on spheres (see, e.g., [3, p. 33]).

Here I shall sketch a proof of the following theorem:
Let M be a piecewise-linear manifold of dimension $n \geqq 7$, which has the same homotopy-type as the n-sphere S^{n}. Then there is a piecewiselinear equivalence of $M-\{$ point $\}$ with euclidean n-space; in particular, M is topologically equivalent to S^{n}.

This theorem is not the best possible, for C. Zeeman has been able to refine the method presented here so as to prove the same theorem for $n \geqq 5$.

A piecewise-linear n-manifold is a polyhedron with a linear triangulation satisfying the condition that the link of each vertex is combinatorially equivalent to the standard $(n-1)$-sphere; all the manifolds with which I am concerned here have no boundary. In general, all the spaces in this paper will be polyhedra, finite or infinite, and each map will be polyhedral, i.e., induced by a simplicial map of linear triangulations.

Let K be a finite subpolyhedron of the finite polyhedron L; let K^{\prime} be a finite subpolyhedron of the finite polyhedron L^{\prime}; let $f: L \rightarrow L^{\prime}$ be a polyhedral map. f is called a relative equivalence $(L, K) \Rightarrow\left(L^{\prime}, K^{\prime}\right)$, if $f(K) \subset K^{\prime}$ and $L-K$ is mapped by f in a 1-1 manner onto $L^{\prime}-K^{\prime}$.

Recall J. H. C. Whitehead's definition of contraction [7, p. 247]: If the simplicial complex A has a simplex σ^{p} which is the face of just one simplex τ^{p+1}, and B is the simplicial complex obtained from A by removing the open simplexes σ^{p} and τ^{p+1}, then $A \rightarrow B$ is called an elementary contraction at σ^{p}. A finite sequence of elementary contractions is a contraction.

If K is a finite subpolyhedron of the finite polyhedron L, then it is said that L contracts onto K, if there is a linear triangulation A of L,

[^0]such that a subcomplex B of A triangulates K, and such that $A \rightarrow B$ is a contraction.

Lemma 1. If L contracts onto K and $(L, K) \Rightarrow\left(L^{\prime}, K^{\prime}\right)$ is a relative equivalence, then L^{\prime} contracts onto K^{\prime}.

This can be shown by the methods of Whitehead [cf. 6, Theorem $1 ; 7$, Theorem 6 and Theorem 7].

Lemma 2. Let M be a piecewise-linear manifold, and let L be a subpolyhedron which contracts onto $K \subset L$, and let U be a neighborhood of K in M. Then there is a piecewise-linear equivalence $h: M \rightarrow M$, such that $h(U)$ is a neighborhood of L [cf. 7, Theorem 23].

The proof can be reduced to the case where $B \subset A \subset C$ are triangulations of $K \subset L \subset M$ respectively, and $A \rightarrow B$ is an elementary contraction at σ^{p}. It can then be reduced, due to the local euclidean nature of M and the local nature of an elementary contraction, to the case when M is euclidean space; the proof in this case is obvious.

An n-element E is a polyhedron equivalent to the standard geometric n-simplex. Int E will denote the subset of E which corresponds to the interior of the n-simplex.

The following lemma was noticed, for $n=3$, by Moise [4].
Lemma 3. Let the polyhedron M contain two n-elements E_{1} and E_{2}, such that $M=\operatorname{Int} E_{1} \cup \operatorname{Int} E_{2}$. Then $M-\{$ point $\}$ is piecewise-linearly equivalent to euclidean n-space; in particular M is topologically a sphere.

This can be proved by the methods of B. Mazur [2] or M. Brown [1].

If K is a finite polyhedron and Q is the nonsingular join of K to a point x, then Q is called the cone on K with vertex x. If L is a finite subpolyhedron of K, then the cone Q_{1} on L with vertex x is called a subcone of Q.

Lemma 4. A cone Q contracts onto any subcone Q_{1}.
Lemma 5. If P is a finite subpolyhedron of the cone Q, and $\operatorname{dim} P \leqq p$, then there is a subcone Q_{1} of Q, such that $P \subset Q_{1}$ and $\operatorname{dim} Q_{1} \leqq p+1$.
"dim" denotes dimension. The proofs of Lemmas 4 and 5 are elementary.

Let K be a finite polyhedron, M an n-manifold, and $f: K \rightarrow M$ a polyhedral map. Then K is the union of a finite number of convex sets $\left\{\gamma_{i}\right\}$, on each of which f is linear. f is said to be in general position if there exists such $\left\{\gamma_{i}\right\}$ that for all i, j,
(1) If $\operatorname{dim} \gamma_{i}+\operatorname{dim} \gamma_{j}<n+\operatorname{dim} \gamma_{i} \cap \gamma_{j}$, then $f \mid \gamma_{i} \cup \gamma_{j}$ is $1-1$;
(2) If $\operatorname{dim} \gamma_{i}+\operatorname{dim} \gamma_{j} \geqq n+\operatorname{dim} \gamma_{i} \cap \gamma_{j}$, then $\operatorname{dim}\left(\gamma_{i} \cap f^{-1} f \gamma_{j}\right)$ $\leqq \operatorname{dim} \gamma_{i}+\operatorname{dim} \gamma_{j}-n$.

The singular set of $f: K \rightarrow M, S(f)$, is the closure in K of the set $\left\{x \in K \mid f^{-1} f x\right.$ contains more than one point $\}$. The following lemma follows from property 2 of general position.

Lemma 6. If K is k-dimensional, and $f: K \rightarrow M$ is in general position, where M is an n-dimensional manifold, then $\operatorname{dim} S(f) \leqq 2 k-n$.

Lemma 7. If K is a subpolyhedron of L, and M is a manifold, and $f: L \rightarrow M$ is a map such that $f \mid K$ is in general position, then there is a map in general position $g: L \rightarrow M$ such that $g|K=f| K$.

The proof is obtained by localizing to the well-known proof for the case that M is a euclidean space (cf. [5]).

Lemma 8 (Penrose-Whitehead-Zeeman [5]). Let A be a subpolyhedron of the manifold M, with $2(\operatorname{dim} A+1) \leqq \operatorname{dim} M=n$, and let A be contractible to a point in M. Then A is contained in the interior of an n-element in M.

The proof consists in embedding the cone on A, Q, in M. There exists a map $f: Q \rightarrow M$, such that $f \mid A=$ inclusion; by Lemma 7, assume f is in general position. By Lemma $6, f$ will be nonsingular except in the case $2(\operatorname{dim} A+1)=\operatorname{dim} M$, when there will be 0 -dimensional singularities, which can be removed by a trick. Hence $Q \subset M$; Q contracts to a point; a point in M is contained in the interior of an n-element. By Lemma 2, Q (and hence A) is contained in the interior of an n-element.

Let T be a linear triangulation of an n-manifold $M ; T_{p}$ will denote the p-skeleton. T^{*} will denote the dual cell complex; T_{a}^{*} its q-skeleton.

Lemma 9. Let T be a linear triangulation of the n-manifold M; let U and V be neighborhoods of T_{p} and T_{q}^{*} respectively, where $p+q \geqq n-1$. Then there is a polyhedral equivalence $g: M \rightarrow M$, such that $M=U \cup g V$.

This is proved by embedding M nicely in the join of T_{p} and T_{q}^{*} and applying a similar, elementary, lemma to that join.

Proof of Theorem.
(a) CASE. $n=2 k+1, n \geqq 7$.

Let T be a linear triangulation of M. Let Q be the cone on T_{k}. Let $f: Q \rightarrow M$ be a map in general position such that $f \mid T_{k}$ is the inclusion of T_{k} into M; such a map exists by Lemma 7 and the fact that M is k-connected.

By Lemma 6, since $\operatorname{dim} Q=k+1$, and $\operatorname{dim} M=2 k+1$, it follows that $\operatorname{dim} S(f) \leqq 1$. By Lemma 5 , there is a subcone $Q_{1} \subset Q$, such that $S(f) \subset Q_{1}$ and $\operatorname{dim} Q_{1} \leqq 2$.

By the theorem of Penrose, Whitehead, and Zeeman (Lemma 8), since $\operatorname{dim} f Q_{1} \leqq 2$ and $\operatorname{dim} M \geqq 6$, there is an n-element $E \subset M$ containing $f Q_{1}$ in its interior.
Q contracts into Q_{1} (Lemma 4) ; since $S(f) \subset Q_{1}, f$ defines a relative equivalence $\left(Q, Q_{1}\right) \Rightarrow\left(f Q, f Q_{1}\right)$; by Lemma $1, f Q$ contracts onto $f Q_{1}$. Since Int E is a neighborhood of $f Q_{1}$, by Lemma 2, there is a piece-wise-linear homeomorphism $h: M \rightarrow M$ such that $f Q \subset h($ Int $E)$.

Hence $\Delta_{0}=h E$ is an n-element which is a neighborhood of $f Q$. $T_{k} \subset f Q$; hence Δ_{0} is a neighborhood of T_{k}.

Similarly, an n-element Δ_{0}^{*} may be found, which is a neighborhood of T_{k}^{*}.

By Lemma 9, there is a piecewise-linear homeomorphism $g: M \rightarrow M$ such that $M=\operatorname{Int} \Delta_{0} \cup \operatorname{Int} g \Delta_{0}^{*}$. Let $\Delta_{1}=g \Delta_{0}^{*} . M$ is the union of the interiors of the two n-elements Δ_{0} and Δ_{1}; hence by the MazurBrown Theorem (Lemma 3), the complement of a point of M is polyhedrally equivalent to euclidean n-space. In particular M is topologically a sphere.
(b) CASE. $n=2 k, n \geqq 8$.

The proof is very similar; the same notation is used. In this case, however, $\operatorname{dim} S(f) \leqq 2 ; \operatorname{dim} Q_{1} \leqq 3$. The Penrose-Whitehead-Zeeman Theorem applies to $f Q_{1}$ since $\operatorname{dim} f Q_{1} \leqq 3$, and $\operatorname{dim} M \geqq 8$. The rest of the proof is word for word the same.

References

1. M. Brown, A proof of the generalized Schoenfies theorem, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 74-76.
2. B. Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 59-65.
3. J. Milnor, Differentiable manifolds which are homotopy spheres, mimeographed, Princeton, 1959.
4. E. E. Moise, Affine structures in 3-manifolds. VI. Compact spaces covered by two euclidean neighborhoods, Ann. of Math. vol. 58 (1953) p. 107.
5. R. Penrose, J. H. C. Whitehead and E. C. Zeeman, Embedding of manifolds, to appear in Ann. of Math.
6. J. H. C. Whitehead, On subdivisions of complexes, Proc. Cambridge Philos. Soc. vol. 31 (1935) pp. 69-75.
7. -, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. (2) vol. 45 (1939) pp. 243-327.

Mathematical Institute, Oxford, England

[^0]: ${ }^{1}$ The author has a fellowship of the National Science Foundation, U.S.A.

