A GENERALIZATION OF H-SPACES¹

BY BRUNO HARRIS

Communicated by Hans Samelson, August 2, 1960

- 1. Introduction. An *H*-space is a topological space *S* with a continuous multiplication $f: S \times S \rightarrow S$, $f(x, y) = x \cdot y$, having a two-sided unit e: thus $e \cdot x = x$, $x \cdot e = x$ for all x in S. We shall consider spaces S with a more general type of product: namely, instead of assuming a two-sided unit e, we assume only
 - (i) $e \cdot x = x$ for all x.
- (ii) There is a continuous map $\sigma: S \rightarrow S$ such that $x \cdot \sigma(x) = x$ for all x. Thus if $\sigma(x) = e$ for all x, we have an H-space.

A general class of such spaces S is constructed as follows: let G be a topological group, σ a continuous endomorphism, K a closed subgroup of G contained in (not necessarily equal to) the fixed point set of σ ; let S = G/K, the space of left cosets, and define a product in S: $f(g_1K, g_2K) = g_1\sigma(g_1^{-1})g_2K$. Another way of looking at this product is the following: since G acts on the left on G/K, any continuous map q: G/K into G, defines a product on G/K by $f(g_1K, g_2K) = g(g_1K)g_2K$. In the above situation we have taken the map $q(gK) = g\sigma(g^{-1})$. The product then satisfies (i) and (ii) above, with $\sigma(gK) = \sigma(g)K$. Note that if σ maps all of G onto the identity element, then S=G and the product is just the product in G. We also remark that if q is any crosssection of G/K into G (i.e., $\pi q = identity$ map of G/K where $\pi: G$ $\rightarrow G/K$, $\pi(g) = gK$) and q(eK) = e, the identity element of G, then the multiplication $g_1K \cdot g_2K = q(g_1K)g_2K$ makes G/K an H-space. Such a q is obtained, for instance, if $\sigma^2 = \sigma$, $K = \sigma(G)$, and $q = g\sigma(g^{-1})$. We shall be more interested, however, in the case $\sigma^2 = I$, the identity map: if, further, K contains the identity component of the fixed point set of σ , then S = G/K is called a symmetric space. The cohomology algebra, with real coefficients, of symmetric spaces of compact Lie groups G, is completely known (see [1; 2]); however, with coefficients a field of characteristic p > 0 less is known and our results when specialized to this case, seem to be new. On taking G = SO(n+1)the rotation group, K = SO(n), $G/K = S^n$ and n odd, the product in the sphere S^n is essentially the same² as one defined by Hopf (in a purely geometric way) in his paper [3] which introduced the subject of H-spaces.

¹ Work supported in part by an N.S.F. grant.

² Actually Hopf's product, as is easy to see, is $(g_1K, g_2K) \rightarrow g_1\sigma(g_1^{-1})\sigma(g_2)K$, but study of this latter product is equivalent to study of the former.

Our aim is to study the cohomology algebra of the space S using Hopf's method, i.e., using directly the product map f. We assume that the cohomology algebra $H^*(S, F) = \sum_{n\geq 0} H^n(S, F)$ satisfies three conditions: each H^n is finite-dimensional over F, H^0 is one dimensional, and $H^*(S\times S, F) = H^*(S, F)\otimes H^*(S, F)$. We will also assume F is perfect and contains the eigenvalues of σ^* on $H^*(S, F)$.

2. In this section we assume that we have a space S with a multiplication f satisfying conditions (i) and (ii). We denote by f^* and σ^* the induced cohomology maps, and choose a minimal set of homogeneous generators z_1, z_2, \cdots of $H = H^*(S, F)$ according to the Jordan canonical form of σ^* : i.e. we assume that the degree $d^0z_i \leq d^0z_{i+1}$, and $\sigma^*(z_i) = \lambda_i z_i + \eta_i z_{i-1} + d_i$, d_i a decomposable element, $\eta_i = 0$ or 1. We divide the set of generators into three subsets: y_1, y_2, \cdots being the z_i with $\lambda_i \neq 1$; x_1, x_2, \cdots , the z_i with $\lambda_i = 1 = \eta_i$; w_1, w_2, \cdots , the z_i with $\lambda_i = 1$, $\eta_i = 0$. We denote by Y the subalgebra of H generated by the y_i (and 1).

We call the height of z_i the finite integer s_i (or ∞ if none exists) such that $z_i^{s_i} = 0$, $z_i^{s_{i-1}} \neq 0$. If $z_i = y_j$, we let r_i be the least integer (or ∞) such that $z_i^{r_i}$ belongs to the ideal generated by z_1, \dots, z_{i-1} . Let p = characteristic of F.

PROPOSITION 1. (a) Let $z_i = y_j$ or x_k . If p = 0, $s_i = 2$ or ∞ (according as d^0z_i is even or odd); if p > 2, $s_i = 2$ if d^0z_i is odd, $s_i \equiv 0 \mod p$, or $s_i = \infty$ if d^0z_i is even; if p = 2, $s_i \equiv 0 \pmod 2$, or $s_i = \infty$.

- (b) Let $n_i = 0$ if $z_i = w_j$, $n_i = 0$ or 1 if $z_i = x_k$, $n_i < r_i$ if $z_i = y_l$. Then $z_1^{n_1} z_2^{n_2} \cdot \cdot \cdot z_l^{n_i} \neq 0$ for any t. In particular, the subalgebra of H generated by the $z_i = x_j$ or y_k with $z_i^2 = 0$ is isomorphic to the exterior algebra on these generators.
- (c) Let $\sigma^2 = I$, $p \neq 2$, and choose as generators of H elements $w_1, w_2, \cdots; x_1, x_1', x_2, x_2', \cdots$ satisfying: $\sigma^*(w_i) \equiv w_i \mod D$, $\sigma^*(x_i) \equiv x_i', \sigma^*(x_i') \equiv x_i \mod D$ ($D = decomposable \ elements$). Then: the height of x_i is $\equiv 0 \mod 2$, or $= \infty$; $x_1x_2 \cdots x_k \neq 0$ for any k, and $w_ix_jx_{j+1} \cdots x_k \neq 0$ if $d^0w_i \leq d^0(x_j) \leq \cdots \leq d^0(x_k)$.

THEOREM 1. Suppose that the subalgebra Y of H generated by the y_i and 1 satisfies: $f^*(Y) \subseteq Y \otimes Y$: then H is a free left Y-module. The same result is true with Y replaced by Y', the subalgebra generated by a subset of the y_i . Further, if $f^*(Y') \subseteq Y' \otimes Y'$ then Y' is a Hopf algebra.

For the next result assume that $f^*\sigma^* = (\sigma^* \otimes \sigma^*)f^*$, σ^* is completely reducible on H, and H is finite-dimensional as a vector space over F. We may then choose the generators as w_i , y_j where $\sigma^*(w_i) = w_i$, $\sigma^*(y_j) = \lambda_j y_j$, $\lambda_j \neq 1$.

Let y_1, y_2, \dots, y_r be the y_i of lowest degree n.

PROPOSITION 2. With the above assumptions, if d is the dimension of H as vector space over F, and $\chi(H) = \sum_{i} (-1)^{i} \dim[H^{i}: F]$, then

- (a) If p=0, then $d \equiv 0 \mod(2^r)$ and $\chi(H)=0$.
- (b) If p>0, then $d\equiv 0 \mod(2^r)$ and $\chi(H)=0$ if n is odd, and $d\equiv 0 \mod(p^r)$, $\chi(H)\equiv 0 \mod p^r$, if n is even.
- 3. We now specialize to the case S = G/K. Let π be the projection $\pi(g) = gK$, r the inverse map in $G: r(g) = g^{-1}$, and $q: S \rightarrow G$, $q(gK) = g\sigma(g^{-1})$. Then σ^* acts on both $H^*(G)$ and $H^*(G/K)$ (coefficients in the field F). We assume that both $H^*(G)$, $H^*(G/K)$ satisfy the three conditions at the end of 1.

We choose a minimal set of generators t_1, t_2, \cdots of $H^*(G)$ (homogeneous, of increasing degrees) so that $\sigma^*(t_i) = \gamma_i t_i + P(t_1, \cdots, t_{i-1})$, P a polynomial, γ_i in F, and call the generators u_j if $\gamma_i = 1$, v_k if $\gamma_i \neq 1$. Similarly we choose generators of $H^*(G/K)$ and call y_i those such that $\sigma^* y_i = \lambda_i y_i + Q_i$, where $\lambda_i \neq 1$ and Q_i involves generators previous to y_i .

Denote by U, V, Y the subalgebras generated by the u_i , v_j , y_k respectively. We assert that the generators can be chosen so that the following is true:

THEOREM 2. (a) $H^*(G) = U \otimes V$, q^* is an isomorphism of V onto Y, and p^* is 1-1 on Y: say $p^*(Y) = V'$. Also, $H^*(G) = U \otimes V'$.

(b) If, further, $\sigma^2 = I$ and $p \neq 2$ then q^* annihilates the positive degree elements in U, and $Y = q^*H^*(G)$.

Denote by $m: G \times G \rightarrow G$ the map $m(g_1, g_2) = g_1g_2$

THEOREM 3. If $m^*(V) \subseteq V \otimes V$ and $\sigma^*r^*(V) \subseteq V$, then $H^*(G/K)$ is a free left module over $Y = q^*(V)$. Similarly, with V replaced by V', a subalgebra generated by a subset of the v_i .

THEOREM 4. Let $\sigma^2 = I$, $p \neq 2$. Then $H^*(G/K)$ is a free left module over $q^*H^*(G)$.

BIBLIOGRAPHY

- 1. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. vol. 57, no. 1 (1953) pp. 115-207.
- 2. H. Cartan, (a) Notions d'algèbre différentielle, application aux groupes de Lie, (b) La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologie Algébrique, Bruxelles, 1950, pp. 16-27, 57-71.
- 3. H. Hopf, Ueber die Topologie der Gruppen-Mannifaltigkeiten und ihrer Verallgemeinerungen, Ann. of Math. vol. 42 (1941) pp. 22-52.

NORTHWESTERN UNIVERSITY