RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant
new results, with some indications of proof. Although ordinarily a research announce-
ment should be a brief summary of a paper to be published in full elsewhere, papers
giving complete proofs of results of exceptional interest are also solicited.

A PROOF THAT EVERY BANACH SPACE IS
SUBREFLEXIVE
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A real or complex normed space is subreflexive if those functionals
which attain their supremum on the unit sphere S of E are norm-
dense in E*, i.e., if for each f in E* and each ¢>0 there exist g in
E* and x in S such that |g(x)| =|g| and ||f—¢g]| <e. There exist in-
complete normed spaces which are not subreflexive [1]! as well as
incomplete spaces which are subreflexive (e.g., a dense subspace of a
Hilbert space). It is evident that every reflexive Banach space is sub-
reflexive. The theorem mentioned in the title will be proved for real
Banach spaces; the result for complex spaces follows from this by
considering the spaces over the real field and using the known isome-
try between complex functionals and the real functionals defined by
their real parts.

We first cite a lemma which states, roughly, that if the hyperplanes
determined by two functionals f and g (of norm one) are nearly
parallel, then one of ||[f—g]|, ||[f+g|| must be small.

LEMMA. Suppose E is a normed space and ¢>0. If f, gEE*, ”f” =1
=|gll, are such that |g(x)| <e/2 whenever f(x)=0 and ||x|| <1, then
If—gll seor [lf+gll <e.

A proof of the lemma may be found in [2, Lemma 3.1]. To prove
the theorem suppose fEE* and €>0. We may assume that ” f” =1;
by the lemma, we want to find g in E* such that |g(x)| <1 for all x
in T={x:f(x)=0 and ||x|| <2¢'}, and for which there exists x in
S such that g(x) =1 =” g[ . Let C be the convex hull of the union of
the sets T and U= {x:||x|| <1}, and suppose there exists xo in U
which is also in the boundary of C. Since C has nonempty interior,
by the support theorem there exists g in E*, ||g||=1, such that

1 An easily described example has been suggested by Y. Katznelson: Let E be
the space of all polynomials on [0, 1], with the supremum norm. (The example in [1]
shows clearly how the method of proof given below fails without the assumption of
completeness.)
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sup{g(x): xEC} =g(x0). It follows that g(xo) =1=|[xo|], so that the
lemma applies and the theorem is proved. Thus, it remains to show
that UNbdry C is nonempty. To this end, choose z in U such that
f(2) >0 and let K=(f(2))"*(14+2¢1). Define a partial ordering on
the set Z={xE U: f(x) 2f(z)} as follows: Say that x>y if

) f(® > f(3) and
(i) llx — ol = K[f(®) — f)].

Suppose that W is a totally ordered subset of Z; by (i), the net of
real numbers {f(x): xE€ W} is (bounded and) monotone, and hence
converges to its supremum. From (ii) it follows that W is a Cauchy
net; by the completeness of E, W converges to a point ¥ in U. By
the continuity of f and the norm it follows that y is an upper bound
for W. Thus, by Zorn’s lemma, there exists a maximal element x, of
Z; since xo& UCC, we need only show that x¢&bdry C. If not, then
xo is in the interior of C, and there exists >0 such that xo+az&C.
From the definition of C we see that there exist y in U, x in T and A
in [0, 1] such that xo+az=Ay+(1—\)x. Then f(2) <f(x0) <f(xo+as)
=M(y) =f(y), so that yEZ. Also y—xo=(1—\)(y—x)+as. Thus,
lly =2l = (1 =N)]ly—al| +a= @ =N (|5l +]l«l) +a= 1 =N A+26)
+a<(1—-Nta)(1+2¢1). On the other hand, f(y—xo) =(1—-N)f()
+af(z) = (1 =N +a)f(2), so ”y—xo” < K[f(y) —f(x0) ]. This shows that
y>xy, a contradiction which completes the proof.

A possible generalization of this theorem remains open: Suppose E
and F are Banach spaces, and let £(E, F) be the Banach space of all
continuous linear transformations from E into F, with the usual
norm. For which E and F are those T such that || T|| =|| Tx|| (for some
x in E, ||x||=1) dense in £(E, F)? This is true for arbitrary E if F
is an ideal in m(4) (the space of bounded functions on the set 4,
with the supremum norm).

Added in proof: If C is a bounded closed convex set, let
C'={fEE*: f(x) =sup {f(y): y&C} for some x in C}. A slight modi-
fication of the above argument shows that C’ is dense in E*. This
solves a problem proposed by Klee in Math. Z. vol. 69 (1958) p. 98.
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