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The purpose of this note is to announce a decomposition theory for 
unitary representations over a separable complex Hubert space, pro­
totyped after the type I theory given in [ó], but which applies to all 
separable locally compact groups. The theory uses the central (or 
canonical) decomposition throughout and the "building blocks" are 
the primary (or factor) representations. (A representation is primary 
if it cannot be expressed as the direct sum of two disjoint representa­
tions. Two representations L and M are disjoint, denoted LóM, if 
no subrepresentation of one is equivalent to any subrepresentation of 
the other.) 

PROPOSITION 1. Let L denote a representation of a separable locally 
compact group G with a decomposition Lc^fzL

yd/x(y) over a separable 
Borel space Z, such that the range of the corresponding projection-valued 
measure is contained in the center of the commuting algebra, (R(L, L), 
of L. Then there exists a Borel subset Z' of Z such that ix{Z — Z') = 0 and 
Lv àLv' whenever y, y'ÇzZ' and y^y'. 

This result has also been announced by Naimark [9, Theorem 1 ] 
in the important special case where the decomposition is the central 
decomposition. The proof of Proposition 1 is a simple perturbation 
of a proof given by Guichardet [3 ] for the special case of the central 
decomposition of a multiplicity free representation. 

A representation L covers a representation M, denoted L} M, if no 
subrepresentation of M is disjoint from L. L and M are said to be 
quasi-equivalenty denoted L~M, if L covers M and M covers L. 

PROPOSITION 2. Two representations L and M are quasi-equivalent 
if and only if they have central decompositions over the same measure 
space, say Lc^fzL

ydjii(y) and Mc^.fzM
vdti{y), such that LV~MV for 

fi-almost all y. 

The proof of Proposition 2 is an adaptation of known facts about 
direct integrals of isomorphisms of von Neumann algebras. (Cf. [l].) 

The collection Q of all quasi-equivalence classes of representations 
of a group G (always assumed to be separable locally compact), 
partially ordered by the covering relation defined above, is a distribu-
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tive cr-lattice in which one may take relative complements. In our 
theory the dual object, denoted (3, is taken to be the collection of 
minimal elements of Q or, equivalently, the collection of all quasi-
equivalence classes of primary representations of G. We call G the 
quasi-dual to distinguish it from the traditional dual, G, the collection 
of unitary equivalence classes of irreducible representations of G. 

G is given a Borel structure as follows. Define Gc, the "concrete" 
representations of G, and a Borel structure for Gc as in §9 of [ô]. Let 
Gp denote the subset of Gc consisting of primary representations. If B 
is a Borel subset of Gc, let Bq denote the subset of elements in G° 
which are quasi-equivalent to some element in B. Give Gp the smallest 
Borel structure containing all sets B and Bq such that B is a Borel 
subset of Gc for which B QGP. Give G the Borel structure defined as 
a quotient space of Gp. (Cf. [ó].) Then G is a separated Borel space. 
Indeed, every point of G is a Borel set. 

PROPOSITION 3. The central decomposition of a representation L of 
a separable locally compact group G may always be taken over the Borel 
space G. More explicitly, there exists a a-finite measure [x on G and 
^-measurable map y-+Lv of G into Gc such that LyÇ:y and L ~ / # 7>d/x(;y). 

The method of proof is to begin with the central decomposition of 
L over an arbitrary space Z, and then to transfer the corresponding 
measure over to G, by means of a mapping of Z into G. Each measure 
fji determined on G by Proposition 3 is tame in the sense that (5 , n) 
is measure space isomorphic to a cr-finite Borel measure on the unit 
interval [0, l ] , with the usual Borel structure. 

PROPOSITION 4. The above decomposition theory determines a one-to-
one, lattice isomorphism of Q, the lattice of quasi-equivalence classes of 
representations of G, onto a lattice ideal of tame measure classes on G. 

The image of Q under this isomorphism is called the canonical 
measure lattice on G, and is denoted C3Tl(G). If G is a type I group, 
C9Tl(ö) is the lattice of all tame measure classes on G. In general, 
however, C2fTl(G) is a proper lattice ideal of the lattice of all tame 
measure classes on G. We have in our possession a (somewhat super­
ficial) characterization of <BSfTC((3) which will be published elsewhere. 

We next present a formulation of multiplicity theory which 
(a) meshes with the classification of quasi-equivalence classes given 
above, (b) distinguishes representations, up to unitary equivalence, 
within a quasi-equivalence class, and (c) casts the multiplicity theory 
for type I, II and III representations into the same mold. 

Let L be a quasi-equivalence class and /x the corresponding measure 
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class on G. A multiplicity function for /x is a function ƒ, defined on the 
lattice ideal of all Borel measure classes v on G such that v ̂ /z, having 
non-negative real numbers and <*> for values, and satisfying the addi­
tional properties: (a) If v = 0, then f(v)=0, (b) if v\ and v2 are Borel 
measure classes on G such that O T ^ I ^ ^ ^ J U , then f(v2) ûf(vi) and 
(c) if v is in the domain of ƒ and is the supremum of a countable 
family {vj} of two-by-two disjoint, nonzero measure classes on G, 
then / f r )= inf {/fry)}. 

Every L in Q may be expressed in the form L = L i V X n V X m , 
where L* is a type i element of Q, i — I, II , III [5, Theorem 1.2]. Ln 
is called the type II part of L. A representation is infinite if L~ooZ,. 
A representation is ^wtte if no subrepresentation is infinite. 

PROPOSITION 5. Suppose L£Q and \x is the corresponding measure 
class on G, given by Proposition 4. Let M be any finite representation in 
the type II part of L. Then to each representation L i £ L , there cor­
responds a multiplicity function / i for JJL. TWO representations in the 
class L are unitary equivalent if and only if they correspond to the same 
multiplicity function for JJL. (The definition of these functions depends 
on the choice of M.) 

The multiplicity function corresponding to L\Ç^L is defined by con­
sidering the multiplicities of the primary components appearing in 
the central decomposition of L\. These multiplicity functions de­
scribe the lattice structure within a quasi-equivalence class, in the 
following sense. If / i , ƒ2 correspond to Lh L2respectively, then Li^L2 

if and only if f\(v) ^-f^v) for all V^/JL. If L is type I, the multiplicity 
theory is "absolute" in the sense that it does not depend on the choice 
of a finite type II representation M. In the type I case, the range of 
the multiplicity functions is the set of non-negative integers and 00. 

If G is a type I group, the theory described above is essentially 
equivalent to that described in [ó]. Indeed, the dual G may be 
mapped, one-to-one, onto the quasi-dual G by sending an irreducible 
representation into the primary class containing it. This mapping, 
and its inverse, are both measurable. Under this identification, the 
order-preserving classification of quasi-equivalence classes by meas­
ure classes on G is equivalent to the order-preserving classification of 
multiplicity free representations by measure classes on G. The theo­
rem [5, Theorem 1.4] that every type I representation is the direct 
sum of mutually disjoint representations of uniform multiplicity fol­
lows from the multiplicity theory described above and well knovsm 
properties of multiplicity functions. 

A completely analogous decomposition theory holds for *-repre-
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sentations (over separable complex Hubert space) of separable Ba-
nach *-algebras. Also, for a fixed multiplier a for a separable locally 
compact group G, we obtain a completely analogous decomposition 
theory for (projective) (r-representations of G. (Cf. [7].) 
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