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Clifford Spector in [4] proved that there exists a minimal degree 
less than 0". J. R. Shoenfield in [3] asked: "Does there exist a mini
mal degree a such that 0 ^ 0 ' ? " We show that the answer to his ques
tion is yes! Our notation is that of [4]. 

We say that b strictly extends a if & and a are distinct sequence 
numbers, and if the sequence represented by b extends the one repre
sented by a; we express this symbolically as S Ext (b, a). If 
{00, 0i, &2, - - *} is a sequence of sequence numbers such that for 
each i, ai+\ strictly extends 0», then there is a unique function f(n) 
such that for each i there is an m with the property that f(m) =ai\ if 
j 00, 01, 02, ' * * } Ç 5 , then we say f(n) is a function associated with 
S. Spector in [4] obtained a function of minimal degree as the unique 
function associated with every member of a contracting sequence of 
sets of sequence numbers. Our construction is inspired by his, but it 
differs markedly from his in one respect: each one of our sets of se
quence numbers will be recursively enumerable, whereas each one 
of his was recursive. 

For each natural number c, let c* be the unique, recursively 
enumerable set which has c a s a Gödel number. There exists a recur
sive function g{n) such that for each c, g(c) is the Gödel number of the 
representing function of a recursive predicate Rc(rn, x) with the 
property that x £ c * if and only if (Em)Rc(mf x). We define a recursive 
predicate H(c, tt e, xf m, by d) which is basic to our construction: 

H(c, t, e, x, m, b, d) = (i) i<2(SExt((x) {, t) & Rc((m)iy (*),) 

& T\((x)iy e, by (d)d) & U«d)o) * ff(W)i). 

We define a partial recursive function Y(ct tt e) : 

UxH(c, /, e, (x)o, (x)h (x)2, (x)z) 

Y(cy ty e) = j if (Ex)H(Cy ty £, (x) o, (*)i, (a)2, (*) 3) 

[undefined otherwise. 

We define a recursively enumerable set of sequence numbers denoted 
by W(Cy ty e): (a) / £ f f ( c , tf e) if t is a sequence number; (b) if 
wGW(Cy ty e) and if F(c, w, e) is defined, then (Y(ct u, e))o,o€zW(Cy tt e) 
and (F(c, ut e))o,i(E.W(Cy tt e)\ and (c) every member of W(ct tt e) is 
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obtained by an application of (a) followed by finitely many applica
tions of (b). I t is clear that there exists an effective procedure for 
computing a Gödel number of W(c, t, e) from the triple (c, t, e). We 
define the recursive function V(c, t, e) to be that function whose value 
for the triple (c, t, e) is equal to the result of applying this effective 
procedure to the triple (c, t> e). 

We are ready to define four functions simultaneously by induction, 
Q(i, j)y v(i), u(i) and t(i), where i and j are natural numbers. Q(it j) 
will take only 0 and 1 as values. The sequence {u(0)} u(l), u(2)> • • • } 
will consist of sequence numbers such that for each n> u(n + l) will 
strictly extend u(n)\ the unique function h(n) associated with this 
sequence will have minimal degree. 

Let q be a Gödel number of the set of all sequence numbers. Let 
0(w) be the function which is everywhere 0. If t is a sequence number, 
let w{t) be the least x such that SExt((#)o, /), SExt((x)i, t), (x)0 does 
not strictly extend (x)i, (x)i does not strictly extend (x)0 and (x)0 

9*(x)i. We set *(0)=0 and Q(i, 0) = 1 for all *>0. We set «(0) 
==21+^{°r<0» if the latter expression is defined; otherwise we set 
«(0) = 2. If Y(q, u(0), 0) is defined, then we set 0(0, 0) = 1 and v(0) 
= (F(g, «(0), 0))0; otherwise we set Q(0, 0) = 0 and v(0)=w(u(0)). 

Now suppose that Q(i, s — 1) has been defined for all i, and that 
v(s — l) and u(s—l) have also been defined, where s > 0 . Suppose 
further that (v(s— l))o and (v(s — l))i are distinct sequence numbers 
such that neither one strictly extends the other. Let u(s) be the least 
one of (z;(s--l))o and (n(s—l))i which is not strictly extended by 
n*<»(»-D Pt+{s*(<)» if the latter expression is defined; otherwise, let 
u(s) = (v(s - l))o. Let {i\i < s, Q(i, s - 1) = 1} VJ {s, s + l } 
= {ii, iï, ' ' ' > irt+i}, where ii<i2< • • • <irt+i. Let vs

0 = q; and for 
each k<r„ let v'k+1= V(vs

kfu(s),ik+i). Let/($) ber8 + l if Y(vl,u(s),ih+i) 
is defined for all k<r8; otherwise, let t(s) be the least k^r9 for which 
Y(v*k-i, u(s), ik) is not defined. We define v(s) and Q(i, s) for all i: 
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Let h(n) be the unique function associated with the sequence 
{u(0), «(1), w(2), • • • } of sequence numbers. I t is clear from the 
definition of u(s) that h(n) is nonrecursive. To see that h(n) has degree 
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less than or equal to 0', observe that for each fixed 5>0, u(s) can be 
computed if the value of v(s — 1) and finitely many truth-values of 
(Ey)T{(0(y), 5, x, y) are known, t(s) can be computed if the values of 
« W , (?(0, 5 — 1), Ç(l, 5 - 1 ) , • • • , Q(s — 1, 5—1) and finitely many 
truth-values of (Ey)Ti(e, x, y) are known, and both v(s) and Q(i, s) 
for all i can be computed if the values of u(s)y t(s), Ç(0, 5 — 1), 
Q(l, 5—1), • • • , Q(s — 1, 5—1) are known. 

We now show by induction on i that for each i there is an 5** such 
that Q(iy 5—1) = Q(i, s) for all s^s**. Suppose this is so for all i<k. 
Let 5* be such that Q(i, 5 — 1) = Q(i, s) for all i<k and all s^s*. Sup
pose (for the sake of a reductio ad absurdum) that s' ^ 5*, Q(k, s' — 1) = 0 
and Ç(fe, 5') = 1. I t follows from the definition of Q(k, s') that Otitis') 
<k, Q(it(8'), 5; —1) = 1 and Qiitw), s')=0. But this last is impossible 
because either k = 0 or s'^ 5*. It must be the case that there is an 5** 
such that Q(k, s'-l) = Q(k, s') for all s'^s**. For each i, let $(t) be 
the least 5 such that Q(i, s' — 1) = Q(i, s') for all s'^ 5. It can be shown 
that the function s(i) is not recursive. 

We define a contracting sequence of sets of sequence numbers. We 
set F0 equal to the recursively enumerable set which has F(g, u(s(0)), 0) 
as aGödel number if Q(0, 5(0) —1) = l,and equal to {s\ Ext(5, ^(5(0)))} 
otherwise. For each j>0, let/y_i be a Gödel number of Fy_i. We set 
Fj equal to the recursively enumerable set which has F(/y_i, u(s(j)),j) 
as a Gödel number if Q(j, s(j) — 1) = 1, and equal to 
J5|Ext(5, u(s(j))), s£F3-i} otherwise. 

Suppose that {e}h(n) is defined for all n. We claim that either 
\e}h(n) is recursive or h(n) is recursive in {e}h(n). Suppose that 
Q(e, s(e) —1)=0, then {e}h(n) is recursive. This is so, because for 
each n> there is an s(E.Fe and a d such that T}(5, e, n, d)> and because 
for each such 5 and d, U(d) = {e} h(n). Suppose that Q(e, s(e) — 1) = 1, 
then h(n) is recursive in {e}h(n). This is so because there is only one 
function w(n) associated with Fe such that \e}w(n) — \e\h(n) for all 
n. To compute h(n) from {e}h(n), we merely simultaneously enumer
ate Fe and the set of all deductions; whenever a choice has to be made 
between two sequence numbers, s\ and 52, of Fe, only one of which, 
let us say 52, represents an initial segment of h(n}, there is nothing to 
fear because eventually some deduction will make clear that 
(Ed, b)(T\(slt e, b, (d)o)&Uad)o)^{e}h(b)&T\(s2y e, b, (d)à&U«d)ù 

This completes the proof of Theorem 1 below. By making inessen
tial changes Theorem 2 is proved. 

THEOREM 1. There exists a minimal degree less than 0'. 
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THEOREM 2. For each degree c, there is a degree g greater than c and 
less than cf such that c<b<gfor no degree b. 
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