# A MINIMAL DEGREE LESS THAN $0^{\prime}$ 

BY GERALD E. SACKs ${ }^{1}$<br>Communicated by A. W. Tucker, April 13, 1961

Clifford Spector in [4] proved that there exists a minimal degree less than 0 ". J. R. Shoenfield in [3] asked: "Does there exist a minimal degree $a$ such that $a \leqq 0^{\prime}$ ?" We show that the answer to his question is yes! Our notation is that of [4].

We say that $b$ strictly extends $a$ if $b$ and $a$ are distinct sequence numbers, and if the sequence represented by $b$ extends the one represented by $a$; we express this symbolically as $\operatorname{SExt}(b, a)$. If $\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}$ is a sequence of sequence numbers such that for each $i, a_{i+1}$ strictly extends $a_{i}$, then there is a unique function $f(n)$ such that for each $i$ there is an $m$ with the property that $\bar{f}(m)=a_{i}$; if $\left\{a_{0}, a_{1}, a_{2}, \cdots\right\} \subseteq S$, then we say $f(n)$ is a function associated with $S$. Spector in [4] obtained a function of minimal degree as the unique function associated with every member of a contracting sequence of sets of sequence numbers. Our construction is inspired by his, but it differs markedly from his in one respect: each one of our sets of sequence numbers will be recursively enumerable, whereas each one of his was recursive.

For each natural number $c$, let $c^{*}$ be the unique, recursively enumerable set which has $c$ as a Gödel number. There exists a recursive function $g(n)$ such that for each $c, g(c)$ is the Gödel number of the representing function of a recursive predicate $R_{c}(m, x)$ with the property that $x \in c^{*}$ if and only if $(E m) R_{c}(m, x)$. We define a recursive predicate $H(c, t, e, x, m, b, d)$ which is basic to our construction:

$$
\begin{aligned}
H(c, t, e, x, m, b, d) \equiv(i)_{i<2}( & \operatorname{SExt}\left((x)_{i}, t\right) \& R_{c}\left((m)_{i},(x)_{i}\right) \\
& \left.\& T_{1}^{1}\left((x)_{i}, e, b,(d)_{i}\right)\right) \& U\left((d)_{0}\right) \neq U\left((d)_{1}\right)
\end{aligned}
$$

We define a partial recursive function $Y(c, t, e)$ :
$Y(c, t, e)= \begin{cases}\mu x H\left(c, t, e,(x)_{0},(x)_{1},(x)_{2},(x)_{3}\right) \\ & \text { if }(E x) H\left(c, t, e,(x)_{0},(x)_{1},(x)_{2},(x)_{3}\right) \\ \text { undefined otherwise. } & \end{cases}$
We define a recursively enumerable set of sequence numbers denoted by $W(c, t, e)$ : (a) $t \in W(c, t, e)$ if $t$ is a sequence number; (b) if $u \in W(c, t, e)$ and if $Y(c, u, e)$ is defined, then $(Y(c, u, e))_{0,0} \in W(c, t, e)$ and $(Y(c, u, e))_{0,1} \in W(c, t, e)$; and (c) every member of $W(c, t, e)$ is

[^0]obtained by an application of (a) followed by finitely many applications of (b). It is clear that there exists an effective procedure for computing a Gödel number of $W(c, t, e)$ from the triple ( $c, t, e$ ). We define the recursive function $V(c, t, e)$ to be that function whose value for the triple ( $c, t, e$ ) is equal to the result of applying this effective procedure to the triple ( $c, t, e$ ).

We are ready to define four functions simultaneously by induction, $Q(i, j), v(i), u(i)$ and $t(i)$, where $i$ and $j$ are natural numbers. $Q(i, j)$ will take only 0 and 1 as values. The sequence $\{u(0), u(1), u(2), \cdots\}$ will consist of sequence numbers such that for each $n, u(n+1)$ will strictly extend $u(n)$; the unique function $h(n)$ associated with this sequence will have minimal degree.

Let $q$ be a Gödel number of the set of all sequence numbers. Let $0(n)$ be the function which is everywhere 0 . If $t$ is a sequence number, let $w(t)$ be the least $x$ such that $\operatorname{SExt}\left((x)_{0}, t\right), \operatorname{SExt}\left((x)_{1}, t\right),(x)_{0}$ does not strictly extend $(x)_{1},(x)_{1}$ does not strictly extend $(x)_{0}$ and $(x)_{0}$ $\neq(x)_{1}$. We set $t(0)=0$ and $Q(i, 0)=1$ for all $i>0$. We set $u(0)$ $=2^{\left.1+\bar{g} \overline{0}(00)^{\circ}(0)\right)}$ if the latter expression is defined; otherwise we set $u(0)=2$. If $Y(q, u(0), 0)$ is defined, then we set $Q(0,0)=1$ and $v(0)$ $=(Y(q, u(0), 0))_{0}$; otherwise we set $Q(0,0)=0$ and $v(0)=w(u(0))$.

Now suppose that $Q(i, s-1)$ has been defined for all $i$, and that $v(s-1)$ and $u(s-1)$ have also been defined, where $s>0$. Suppose further that $(v(s-1))_{0}$ and $(v(s-1))_{1}$ are distinct sequence numbers such that neither one strictly extends the other. Let $u(s)$ be the least one of $(v(s-1))_{0}$ and $(v(s-1))_{1}$ which is not strictly extended by $\prod_{i<v(s-1)} p_{i}^{1+\{s)^{0}(t)}$, if the latter expression is defined; otherwise, let $u(s)=(v(s-1))_{0}$. Let $\{i \mid i<s, Q(i, s-1)=1\} \cup\{s, s+1\}$ $=\left\{i_{1}, i_{2}, \cdots, i_{r_{s}+1}\right\}$, where $i_{1}<i_{2}<\cdots<i_{r_{s}+1}$. Let $v_{0}^{s}=q$; and for each $k<r_{s}$, let $v_{k+1}^{s}=V\left(v_{k}^{s}, u(s), i_{k+1}\right)$. Let $t(s)$ be $r_{s}+1$ if $Y\left(v_{k}^{s}, u(s), i_{k+1}\right)$ is defined for all $k<r_{s}$; otherwise, let $t(s)$ be the least $k \leqq r_{s}$ for which $Y\left(v_{k-1}^{s}, u(s), i_{k}\right)$ is not defined. We define $v(s)$ and $Q(i, s)$ for all $i$ :

$$
\begin{aligned}
v(s) & =\left\{\begin{array}{ll}
w(u(s)) & \text { if } t(s)=1, \\
\left(Y \left(v_{k-1}^{s}, u(s),\right.\right. & \left.\left.i_{k}\right)\right)_{0}
\end{array} \text { if } t(s)=k+1>1 .\right. \\
Q(i, s) & =\left\{\begin{array}{cl}
Q(i, s-1) & \text { if } i<i_{t(s)}, \\
0 & \text { if } i=i_{t(s)} \leqq s, \\
1 & \text { if } i>i_{t(s)} \text { or if } i>s .
\end{array}\right.
\end{aligned}
$$

Let $h(n)$ be the unique function associated with the sequence $\{u(0), u(1), u(2), \cdots\}$ of sequence numbers. It is clear from the definition of $u(s)$ that $h(n)$ is nonrecursive. To see that $h(n)$ has degree
less than or equal to $0^{\prime}$, observe that for each fixed $s>0, u(s)$ can be computed if the value of $v(s-1)$ and finitely many truth-values of $(E y) T_{1}^{1}(\overline{0}(y), s, x, y)$ are known, $t(s)$ can be computed if the values of $u(s), Q(0, s-1), Q(1, s-1), \cdots, Q(s-1, s-1)$ and finitely many truth-values of $(E y) T_{1}(e, x, y)$ are known, and both $v(s)$ and $Q(i, s)$ for all $i$ can be computed if the values of $u(s), t(s), Q(0, s-1)$, $Q(1, s-1), \cdots, Q(s-1, s-1)$ are known.

We now show by induction on $i$ that for each $i$ there is an $s^{* *}$ such that $Q(i, s-1)=Q(i, s)$ for all $s \geqq s^{* *}$. Suppose this is so for all $i<k$. Let $s^{*}$ be such that $Q(i, s-1)=Q(i, s)$ for all $i<k$ and all $s \geqq s^{*}$. Suppose (for the sake of a reductio ad absurdum) that $s^{\prime} \geqq s^{*}, Q\left(k, s^{\prime}-1\right)=0$ and $Q\left(k, s^{\prime}\right)=1$. It follows from the definition of $Q\left(k, s^{\prime}\right)$ that $0 \leqq i_{t\left(s^{\prime}\right)}$ $<k, Q\left(i_{t\left(s^{\prime}\right)}, s^{\prime}-1\right)=1$ and $Q\left(i_{t\left(s^{\prime}\right)}, s^{\prime}\right)=0$. But this last is impossible because either $k=0$ or $s^{\prime} \geqq s^{*}$. It must be the case that there is an $s^{* *}$ such that $Q\left(k, s^{\prime}-1\right)=Q\left(k, s^{\prime}\right)$ for all $s^{\prime} \geqq s^{* *}$. For each $i$, let $s(i)$ be the least $s$ such that $Q\left(i, s^{\prime}-1\right)=Q\left(i, s^{\prime}\right)$ for all $s^{\prime} \geqq s$. It can be shown that the function $s(i)$ is not recursive.

We define a contracting sequence of sets of sequence numbers. We set $F_{0}$ equal to the recursively enumerable set which has $V(q, u(s(0)), 0)$ as a Gödel number if $Q(0, s(0)-1)=1$, and equal to $\{s \mid \operatorname{Ext}(s, u(s(0)))\}$ otherwise. For each $j>0$, let $f_{j-1}$ be a Gödel number of $F_{j-1}$. We set $F_{j}$ equal to the recursively enumerable set which has $V\left(f_{j-1}, u(s(j)), j\right)$ as a Gödel number if $Q(j, s(j)-1)=1$, and equal to $\left\{s \mid \operatorname{Ext}(s, u(s(j))), s \in F_{j-1}\right\}$ otherwise.

Suppose that $\{e\}^{h}(n)$ is defined for all $n$. We claim that either $\{e\}^{h}(n)$ is recursive or $h(n)$ is recursive in $\{e\}^{h}(n)$. Suppose that $Q(e, s(e)-1)=0$, then $\{e\}^{h}(n)$ is recursive. This is so, because for each $n$, there is an $s \in F_{e}$ and a $d$ such that $T_{1}^{1}(s, e, n, d)$, and because for each such $s$ and $d, U(d)=\{e\}^{h}(n)$. Suppose that $Q(e, s(e)-1)=1$, then $h(n)$ is recursive in $\{e\}^{h}(n)$. This is so because there is only one function $w(n)$ associated with $F_{e}$ such that $\{e\}^{w}(n)=\{e\}^{h}(n)$ for all $n$. To compute $h(n)$ from $\{e\}^{h}(n)$, we merely simultaneously enumerate $F_{e}$ and the set of all deductions; whenever a choice has to be made between two sequence numbers, $s_{1}$ and $s_{2}$, of $F_{e}$, only one of which, let us say $s_{2}$, represents an initial segment of $h(n)$, there is nothing to fear because eventually some deduction will make clear that $(E d, b)\left(T_{1}^{1}\left(s_{1}, e, b,(d)_{0}\right) \& U\left((d)_{0}\right) \neq\{e\}^{h}(b) \& T_{1}^{1}\left(s_{2}, e, b,(d)_{1}\right) \& U\left((d)_{1}\right)\right.$ $\left.=\{e\}^{h}(b)\right)$.

This completes the proof of Theorem 1 below. By making inessential changes Theorem 2 is proved.

Theorem 1. There exists a minimal degree less than $0^{\prime}$.

Theorem 2. For each degree $c$, there is a degree $g$ greater than $c$ and less than $c^{\prime}$ such that $c<b<g$ for no degree $b$.

## References

1. Richard M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability, Proc. Nat. Acad. Sci. U. S. A. vol. 43 (1957) pp. 236-238.
2. A. A. Muchnik, Negative answer to the problem of reducibility of the theory of algorithms, Dokl. Akad. Nauk SSSR vol. 108 (1956) pp. 194-197 (in Russian).
3. J. R. Shoenfield, On degrees of unsolvability, Ann. of Math. vol. 69 (1959) pp. 644-653.
4. Clifford Spector, On degrees of recursive unsolvability, Ann. of Math. vol. 64 (1956) pp. 581-592.

Cornell University


[^0]:    ${ }^{1}$ The author is a predoctoral National Science Foundation Fellow.

