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The purpose of the present note is to sketch a solution for the 
problem of determining the form of all isometries of any reflexive 
Orlicz space.1 A partial result in that direction was obtained earlier 
by J. Lamperti [4] (who suggested this problem to us recently). The 
ideas of the proof are very closely related to those used recently by 
the author to develop a unified and slightly extended theory (un­
published) [ó] for the classical results of Banach [ l ] , Stone [8] and 
Kadison [2] (see also [4]) on isometries of C(X), Lp spaces, and C* 
algebras. The systematic use of semi-inner-product spaces, and gen­
eralized hermitians [5], plays a central role. A semi-inner-product 
space, is a vector space X on which there is defined a (complex 
valued) form [x, y] satisfying: 

(i) Linearity in x, 
(ii) [x, x ] > 0 if xs^O, 
(iii) I [x, y]\2è[x, x]\y, y]. 

X is then normed under ||x|| = [x, x ] 1 / 2 . 
From now on, X is a reflexive Orlicz space [7; 3] whose unit 

sphere is the set { / £ X : J<l>(\f\) ^ l } . I t is somewhat laborious but 
not very difficult to show that the semi-inner-product for X is 
given by: 

U,û-CUfM)*>, 
where 

sgng = 
— if g * 0, 
g 

0 if g = 0 

with C(g) = (Jg0'( | g\ /||g||)sgn g)-"1!!^!2, when g is such that the meas­
ure of {£££2: <j> has no derivative at the point |g(£)| /||gj|} is 0. 

A bounded hermitian operator (see [5]) satisfies by definition 
[ # ƒ , ƒ ] = real for all / £ X . 

PROPOSITION 1. If h is real valued and in £«»(Ö), Hf=hf defines a 
hermitian operator on X, and \\H\\ =||Z4|«>. 

1 Actually the proof sketched below covers the Orlicz spaces over measure spaces 
containing no atoms. If the measure space contains atoms, further argument is 
needed. 
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THEOREM 2.2 If X is different from Z2(£2), H is a bounded hermitian 
on Xy then there is a real valued hÇzL^ÇÏ) such that Hf=hffor allfÇzX, 
and\\H\\=\\h\\„. 

SKETCH OF THE PROOF. If u and v are in X, and have disjoint sup­
ports, Qi and Q2, then lm[H{eioiu+eih)1 eiccu+eifiv]=0. a, /3 real and 
arbitrary lead t o . 

f Hu<t>\ | v | /\\v\\) sgn v = \ f Hv<j>'( \ u \ /\\u\\) sgn u\ . 

One appliesthisto«a = axo1,W8 = i8xo1,Wi=(a+l8)xo1and» = xoj/||xo,||f 
where x« denotes the characteristic function of the measurable set Î2. 
One arrives finally a t : 

*•(-) H1) 
f Hv = 0 

where Xi = ||wi+w2+fl||, X2s=||#i+fl||, X3 = | |^2+^| | , OL, J 3 > 0 arbitrary 
Qi, fl2 and v fixed. Letting the measure of fli tend to 0 in a convenient 
manner Xi, X2 and X3 tend to ||«/|| = 1, so that either <£'(a+]3) = <£'(a0 
+^'(|8) (i.e., <t>(a) =ka2 and X is L2(0)) or else üZz; is 0 on Qi. From 
this follows that if / £ X is a step function and ft0 the support of one 
step, iJ(/-~/(Öo)l) is 0 on £20, hence Hf=hf> where h = Hl. The rest 
is immediate. From this we obtain the main theorem. 

THEOREM 3. If U is an isometry from X onto X, then it is of the 
form Uî(-)=u(*)f(T-) where T is a measurable transformation in 12 
and u a fixed function in Xy unless X is a Hubert space. 

SKETCH OF THE PROOF. The expression [ƒ, g] ' = [Uf, Ug] is again a 
semi-inner-product on X, so that if H is hermitian the same holds 
for UHU~l. If the real-valued function hÇzL^Q), denote by Hh the 
multiplication operation defined by h (which is hermitian). UHhU~l 

= # î , where ||A|U = ||-ff|| = I W U Since UHhU-lUHkU~l^UHhhU-\ 
the operation * is multiplicative, and step functions go into step 
functions. This defines T\ the rest goes smoothly. 

REMARK. The previous argument could be modified so as to hold 
for a form not satisfying condition (iii), if a sufficiently strong condi-

2 From a letter I received recently from Dr. C. A. McCarthy, it appears that Mc­
Carthy had a proof of Theorem 2. 
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tion is assumed with respect to #. The space would not be an Orlicz 
space, but an extension of the Lp space for p<l. For the latter Lp 

spaces, it is known that the isometries are as described above. 
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We give a very short proof of the recurrence theorem of Chung and 
Fuchs [ l ] in one and two dimensions. This new elementary proof 
does not detract from the old one which uses a systematic method 
based on the characteristic function and yields a satisfactory general 
criterion. But the present method, besides its brevity, also throws 
light on the combinatorial structure of the problem. 

Let N denote the set of positive integers, M that of positive real 
numbers. Let {Xn, n £ N } be a sequence of independent, identically 
distributed real-valued random vectors, and let Sn— ^2^iXv. The 
value x is possible iff for every €>0 there exists an n such that 
P { | 5 W — x\ < e } > 0 ; it is recurrent iff for every €>0 , P { | S n — x\ <e 
for infinitely many n\ = 1 . I t is shown in [ l ] that every possible 
value is recurrent if and only if for some ra£M we have 

(1) î > { | S n | <m\ = oo. 
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