# VECTOR FIELDS ON SPHERES 

BY J. F. ADAMS ${ }^{1}$<br>Communicated by Deane Montgomery, October 9, 1961

Let us write $n=(2 a+1) 2^{b}$, where $a$ and $b$ are integers, and let us set $b=c+4 d$, where $c$ and $d$ are integers and $0 \leqq c \leqq 3$; let us define $\rho(n)=2^{c}+8 d$. Then it follows from the Hurwitz-Radon-Eckmann theorem in linear algebra that there exist $\rho(n)-1$ vector fields on $S^{n-1}$ which are linearly independent at each point of $S^{n-1}$ (cf. [4]).

Theorem 1.1. With the above notation, there do not exist $\rho(n)$ linearly independent vector fields on $S^{n-1}$.

This theorem asserts that the known positive result, stated above, is best possible. Like the theorems given below, it is copied without change of numbering from a longer paper now in preparation.

Theorem 1.1 may be deduced from the following result (cf. [1]).
Theorem 1.2. The truncated projective space $R P^{m+\rho(m)} / R P^{m-1}$ is not coreducible; that is, there is no map $f: R P^{m+\rho(m)} / R P^{m-1} \rightarrow S^{m}$ such that the composite

$$
S^{m}=R R P^{m} / R P^{m-1} \xrightarrow{i} R P^{m+\rho(m)} / R P^{m-1} \xrightarrow{f} S^{m}
$$

has degree 1.
Theorem 1.2 is proved by employing the "extraordinary cohomology theory" $K(X)$ of Atiyah and Hirzebruch [2;3]. If our truncated projective space $X$ were coreducible, then the group $K(X)$ would split as a direct sum, and this splitting would be compatible with any "cohomology operations" that one might define in the "cohomology theory" $K(X)$.

Theorem 5.1. It is possible to define operations

$$
\Psi_{\Lambda}^{k}: K_{\Lambda}(X) \rightarrow K_{\Lambda}(X)
$$

for any integer $k$ (positive, negative or zero) and for $\Lambda=R$ (real numbers) or $\Lambda=C$ (complex numbers). These operations have the following properties.
(i) $\Psi_{\Lambda}^{k}$ is natural for maps of $X$.
(ii) $\Psi_{\Lambda}^{k}$ is a homomorphism of rings with unit.
(iii) The following diagram is commutative.

[^0]\[

$$
\begin{array}{cc}
K_{R}(X) & \xrightarrow{\Psi_{R}^{k}} K_{R}(X) \\
c \downarrow & \not \Psi^{k} \\
K_{C}(X) & \downarrow c \\
\Psi_{C}(X)
\end{array}
$$
\]

(Here the homomorphism $c$ is induced by "complexification" of real bundles.)
(iv) $\Psi_{\Lambda}^{k} \Psi_{\Lambda}^{l}=\Psi_{\Lambda}^{k l}$.
(v) $\Psi_{\Lambda}^{1}$ and $\Psi_{R}^{-1}$ are identity functions. $\Psi_{\Lambda}^{0}$ assigns to each bundle over $X$ the trivial bundle with fibres of the same dimension. $\Psi_{C}{ }^{-1}$ assigns to each complex bundle over $X$ the "complex conjugate" bundle.
(vi) If $\xi \in K_{C}(X)$ and $\mathrm{ch}_{q} \xi$ denotes the $2 q$-dimensional component of the Chern character ch $\xi$, then

$$
\operatorname{ch}^{q}\left(\Psi_{c \xi}^{k} \xi\right)=k^{q} \operatorname{ch}^{q} \xi .
$$

This theorem is proved using virtual representations of groups. By (iv), (v) it is sufficient to define $\Psi_{\Lambda}^{k}$ for $k>0$. One can define polynomials $Q_{n}^{k}$ by setting

$$
\left(x_{1}\right)^{k}+\left(x_{2}\right)^{k}+\cdots+\left(x_{n}\right)^{k}=Q_{n}^{k}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right)
$$

where $\sigma_{i}$ is the $i$ th elementary symmetric function of $x_{1}, x_{2}, \cdots, x_{n}$. One can define a virtual representation of $G L(n, \Lambda)$ by setting

$$
\psi_{n}^{k}=Q_{n}^{k}\left(E_{\Lambda}^{1}, E_{\Lambda}^{2}, \cdots, E_{\Lambda}^{n}\right)
$$

where $E_{\Lambda}^{i}$ denotes the $i$ th exterior power representation. The operations $\Psi_{\Lambda}^{k}$ are induced by the virtual representations $\psi_{n}^{k}$.

The values of our groups $K(X)$ and of our operations in them are given by the following result. In order to state it, we define $\phi(n, m)$ to be the number of integers $s$ such that $m<s \leqq n$ and $s \equiv 0,1,2$ or $4 \bmod 8$.

Theorem 7.4. Assume $m \neq-1 \bmod 4$. Then $\tilde{K}_{R}\left(R P^{n} / R P^{m}\right)=Z_{2^{\prime}}$, where $f=\phi(m, n)$. If $m=0$ then the canonical real line-bundle $\xi$ yields a generator $\lambda=\xi-1$, and the polynomials in $\lambda$ are given by the formula

$$
\lambda Q(\lambda)=Q(-2) \lambda,
$$

where $Q$ is any polynomial with integer coefficients. Otherwise the projection $R P^{n} \rightarrow R P^{n} / R P^{m}$ maps $\widetilde{K}_{R}\left(R P^{n} / R P^{m}\right)$ isomorphically onto the subgroup of $\widetilde{K}_{R}\left(R P^{n}\right)$ generated by $\lambda^{g+1}$, where $g=\phi(m, 0)$. We write $\lambda^{(g+1)}$ for the element in $\widetilde{K}_{R}\left(R P^{n} / R P^{m}\right)$ which maps into $\lambda^{g+1}$.

In the case $m \equiv-1 \bmod 4$ we have

$$
\widetilde{K}_{R}\left(R P^{n} / R P^{4 t-1}\right)=\widetilde{K}_{R}\left(R P^{n} / R P^{4 t}\right)+Z
$$

here the first summand is embedded by an induced homomorphism and the second is generated by a suitable element $\bar{\lambda}^{(g)}$, where $g=\phi(4 t, 0)$.

The operations are given by the following formulae.

$$
\begin{align*}
\Psi_{R}^{k} \lambda^{(\theta+1)} & =\left\{\begin{array}{cc}
0 & (k \text { even }), \\
\lambda^{(o+1)} & (k \text { odd }) ;
\end{array}\right.  \tag{i}\\
\Psi_{R}^{k} \bar{\lambda}^{(\theta)} & =k^{2 t} \lambda^{(\theta)}+\left\{\begin{array}{cc}
(1 / 2) k^{2 t} \lambda^{(o+1)} & (k \text { even }), \\
(1 / 2)\left(k^{2 t}-1\right) \lambda^{(o+1)} & (k \text { odd }) .
\end{array}\right. \tag{ii}
\end{align*}
$$

This theorem is proved by deducing results in the following order:
(i) Results on complex projective spaces for $\Lambda=C$.
(ii) Results on real projective spaces for $\Lambda=C$.
(iii) Results on real projective spaces for $\Lambda=R$.

## References

1. M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3), vol. 11 (1961) pp. 291-310.
2. M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 276-281.
3. -_, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. Vol. 3, pp. 7-38 Amer. Math. Soc., Providence, R. I., 1961.
4. I. M. James, Whitehead products and vector-fields on spheres, Proc. Cambridge Philos. Soc. vol. 53 (1957) pp. 817-820.

The Institute for Advanced Study


[^0]:    ${ }^{1}$ Supported in part by the National Science Foundation under grant G14779.

