VECTOR FIELDS ON SPHERES

BY J. F. ADAMS¹

Communicated by Deane Montgomery, October 9, 1961

Let us write $n = (2a+1)2^b$, where a and b are integers, and let us set b = c+4d, where c and d are integers and $0 \le c \le 3$; let us define $\rho(n) = 2^c + 8d$. Then it follows from the Hurwitz-Radon-Eckmann theorem in linear algebra that there exist $\rho(n) - 1$ vector fields on S^{n-1} which are linearly independent at each point of S^{n-1} (cf. [4]).

THEOREM 1.1. With the above notation, there do not exist $\rho(n)$ linearly independent vector fields on S^{n-1} .

This theorem asserts that the known positive result, stated above, is best possible. Like the theorems given below, it is copied without change of numbering from a longer paper now in preparation.

Theorem 1.1 may be deduced from the following result (cf. [1]).

THEOREM 1.2. The truncated projective space $RP^{m+\rho(m)}/RP^{m-1}$ is not coreducible; that is, there is no map $f: RP^{m+\rho(m)}/RP^{m-1} \rightarrow S^m$ such that the composite

$$S^{m} = \frac{i}{RP^{m}/RP^{m-1}} \xrightarrow{i} RP^{m+\rho(m)}/RP^{m-1} \xrightarrow{f} S^{m}$$

has degree 1.

Theorem 1.2 is proved by employing the "extraordinary cohomology theory" K(X) of Atiyah and Hirzebruch [2; 3]. If our truncated projective space X were coreducible, then the group K(X) would split as a direct sum, and this splitting would be compatible with any "cohomology operations" that one might define in the "cohomology theory" K(X).

THEOREM 5.1. It is possible to define operations

$$\Psi_{\Lambda}^{\kappa} \colon K_{\Lambda}(X) \to K_{\Lambda}(X)$$

for any integer k (positive, negative or zero) and for $\Lambda = R$ (real numbers) or $\Lambda = C$ (complex numbers). These operations have the following properties.

(i) $\Psi^{\mathbf{k}}_{\Lambda}$ is natural for maps of X.

(ii) $\Psi^{\mathbf{k}}_{\mathbf{\Lambda}}$ is a homomorphism of rings with unit.

(iii) The following diagram is commutative.

¹ Supported in part by the National Science Foundation under grant G14779.

J. F. ADAMS

$$K_R(X) \xrightarrow{\Psi_R^k} K_R(X)$$

$$c \downarrow \qquad \downarrow^k \qquad \downarrow^c$$

$$K_C(X) \xrightarrow{\Psi_C^k} K_C(X)$$

(Here the homomorphism c is induced by "complexification" of real bundles.)

(iv) $\Psi^k_{\Lambda}\Psi^l_{\Lambda} = \Psi^{kl}_{\Lambda}$.

(v) Ψ_{Λ}^{1} and Ψ_{R}^{-1} are identity functions. Ψ_{Λ}^{0} assigns to each bundle over X the trivial bundle with fibres of the same dimension. Ψ_{C}^{-1} assigns to each complex bundle over X the "complex conjugate" bundle.

(vi) If $\xi \in K_c(X)$ and $ch_q \xi$ denotes the 2q-dimensional component of the Chern character $ch \xi$, then

$$\operatorname{ch}^{q}(\Psi_{C}^{k}\xi) = k^{q} \operatorname{ch}^{q}\xi.$$

This theorem is proved using virtual representations of groups. By (iv), (v) it is sufficient to define Ψ_{Λ}^{k} for k > 0. One can define polynomials Q_{n}^{k} by setting

$$(x_1)^k + (x_2)^k + \cdots + (x_n)^k = Q_n^k(\sigma_1, \sigma_2, \cdots, \sigma_n)$$

where σ_i is the *i*th elementary symmetric function of x_1, x_2, \cdots, x_n . One can define a virtual representation of $GL(n, \Lambda)$ by setting

$$\boldsymbol{\psi}_n^k = \boldsymbol{Q}_n^k(\boldsymbol{E}_{\Lambda}^1, \boldsymbol{E}_{\Lambda}^2, \cdots, \boldsymbol{E}_{\Lambda}^n)$$

where E_{Λ}^{i} denotes the *i*th exterior power representation. The operations Ψ_{Λ}^{k} are induced by the virtual representations ψ_{n}^{k} .

The values of our groups K(X) and of our operations in them are given by the following result. In order to state it, we define $\phi(n, m)$ to be the number of integers s such that $m < s \leq n$ and $s \equiv 0, 1, 2$ or 4 mod 8.

THEOREM 7.4. Assume $m \not\equiv -1 \mod 4$. Then $\tilde{K}_R(RP^n/RP^m) = Z_2'$, where $f = \phi(m, n)$. If m = 0 then the canonical real line-bundle ξ yields a generator $\lambda = \xi - 1$, and the polynomials in λ are given by the formula

$$\lambda Q(\lambda) = Q(-2)\lambda,$$

where Q is any polynomial with integer coefficients. Otherwise the projection $RP^n \rightarrow RP^n/RP^m$ maps $\tilde{K}_R(RP^n/RP^m)$ isomorphically onto the subgroup of $\tilde{K}_R(RP^n)$ generated by λ^{g+1} , where $g = \phi(m, 0)$. We write $\lambda^{(g+1)}$ for the element in $\tilde{K}_R(RP^n/RP^m)$ which maps into λ^{g+1} .

[January

In the case $m \equiv -1 \mod 4$ we have

$$\tilde{K}_R(RP^n/RP^{4t-1}) = \tilde{K}_R(RP^n/RP^{4t}) + Z;$$

here the first summand is embedded by an induced homomorphism and the second is generated by a suitable element $\bar{\lambda}^{(g)}$, where $g = \phi(4t, 0)$.

The operations are given by the following formulae.

(i)
$$\Psi_R^k \lambda^{(g+1)} = \begin{cases} 0 & (k \text{ even}), \\ \lambda^{(g+1)} & (k \text{ odd}); \end{cases}$$

(ii)
$$\Psi_R^k \bar{\lambda}^{(g)} = k^{2t} \bar{\lambda}^{(g)} + \begin{cases} (1/2)k^{2t}\lambda^{(g+1)} & (k \text{ even}), \\ (1/2)(k^{2t}-1)\lambda^{(g+1)} & (k \text{ odd}). \end{cases}$$

This theorem is proved by deducing results in the following order:

- (i) Results on complex projective spaces for $\Lambda = C$.
- (ii) Results on real projective spaces for $\Lambda = C$.

(iii) Results on real projective spaces for $\Lambda = R$.

References

1. M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3), vol. 11 (1961) pp. 291-310.

2. M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 276-281.

3. -----, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. Vol. 3, pp. 7-38 Amer. Math. Soc., Providence, R. I., 1961.

4. I. M. James, Whitehead products and vector-fields on spheres, Proc. Cambridge Philos. Soc. vol. 53 (1957) pp. 817-820.

THE INSTITUTE FOR ADVANCED STUDY

1962]

1.