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Let C be a real, symmetric, rnXrn, positive-semi-definite matrix. 
Let Rm = {(xi, • • • , xm)| Xi is a real number, i = 1, • • • , m\, and let 
KQ.Rm be a polyhedral convex cone, i.e., there exists a real mXn 
matrix A such that K— {x\xÇiRm and xA ^ 0 } . Consider the func
tion \I/:K-*R defined by \[/(x) = (xCxT)112 for all x £ i £ . We wish to 
characterize the set, Z7, of all supports of yp, where 

(1) U = RmC\ [u\ xEK=*uxT g (xCxTyi*}. 

Let R*+ = RnC\ {7T17T ^ 0} and consider the set 

(2) V = {v\ BxERm,7r& Rn+soidv = wAT + xC, xCxTgl, xA ^ 0 } . 

We shall demonstrate : 

THEOREM. U=V. 

We first show: 

LEMMA 1. x, y<ERm=*(xCyT)2£(xCxT)(yCyT). 

PROOF. If xf yGRm consider the polynomial p(\) =\2xCxT+2\xCyT 

+yCyT— (x+\y)C(x+'\y)T. Since C is positive-semi-definite, p(K) ^ 0 
for all real numbers X, and thus the discriminant of p is nonpositive, 
i.e., 

4(xCyT)2 - 4(xCxT)(yCyT) g 0. q.e.d. 

As an immediate application of Lemma 1 we show: 

LEMMA 2. VCU. 
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PROOF. Let z/GF, then there exist xE.Rm
f 7r£i?+ such that v = wAT 

+xC, xCxT^l. Now if y(~zRm, yA^O, then vyT = yA7rT+xCyT and 
vyT S xCyT, because yA ^ 0, wT ^ 0 and yAwT g 0. Thus, vyT 

^(xCxT)ll2(yCyT)112, by Lemma 1, and vyTS(yCyT)112, because xCxT 

g 1. Thus, A £ U. q.e.d. 

From the fact that C is positive-semi-definite, it follows that : 

LEMMA 3. The set V is convex. 

PROOF. If XkGR™, -n-kGR^, xkA^0, Uk = 7rkAT+xkCf XkCxl^l* 
\k(£R+ for k=ly 2 and Xi+X2=l, then: Xi^i+X2^2= (Xi7Ti+X2'n"2MT 

+ (XiXi+X2x2)C, (XiXi+X2x2)^4 ^ 0 , \iXi+\2X2GRm, Xi7Ti+X27r2£.R+, 
and 

(Xi^i + X2^2)C(XiXi + X2^2)T — 1 
T T T 

g (Xl^i + X2#2)C(Xl#i + X2X2) ~ \\XiC%l ~ X2#2C#2 

= — XiX2[^iCxi — 2xiCx2 + X2CX2] 

= — XiX2(#i ~ Xz)C(xi — x2)
T g 0, 

because C is positive-semi-definite, q.e.d. 

LEMMA 4. The set V is closed. 

PROOF. Let {wk} be a sequence with WkG.Rm
y & = 1, 2, • • • . We 

define the (pseudo) norm of wk, denoted | {wk} \, to be the smallest 
non-negative integer p such that there exists a ko and for all k*zko, 
xk has at most p nonzero components. Now, suppose u is in the closure 
of V, i.e., there exist sequences {uk}, {7^} and {xk} such that 

n m 2P 

7T& E ic+, XkE: R , Uk = 7TA-4 + tffcC, 

(3) x&yl g 0 and ^Cff* ^ 1, i = 1, 2, • • • 

and {2^} converges to u. 

Suppose the sequence {xk} is bounded, then we may assume, having 
taken an appropriate subsequence, that for some xÇmRm

1 {xk}—>x 
and thus, by (3), xA^O and xCxT£*l. Now, yA ?£0=$UkyT — XkCyT 

= TrkA
TyT = yATr%S0, all k=*uyT-xCyT£0. Thus the system, 

yERm, 
y A g 0, 

(u - xC)yT > 0, 

has no solution and by the usual feasibility theorem for linear in
equalities (see e.g. [4] or [5]) the system: 
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vAT = u — xC, 

has a solution, and thus uÇzV. 
We have just demonstrated that if {xk} is bounded, then «£V\ 

Since | {#*} | + | {avl} | <Ztn+n, it is always possible to choose {xk} 
and {Tk} satisfying (3) and such that | {xk} \ + \ {XkA ) | is minimal. 
We shall show next that if {xk}, {irk} are so chosen, then {xk} is 
indeed bounded, thus completing the proof. Suppose then that {xk} 
is not bounded, i.e., 3 a subsequence such that \xk\ — faxt-)112-*™, 
and we may assume that | Xk\ >0 for all k. Let 

xk 
Zk = = T T > K ==z 1 , Z, * • * ; 

1**1 
then {zk} is bounded and we may assume that there is a s£JRw such 
that the Zk converge to z and \z\ = 1. From (3) it follows that zkA ^ 0 
and ZkCz%^l/\xk\ for all k. Thus, zA gOandsCs^O. But then, from 
Lemma 1, zCyT = 0 for all yÇzRm, and zC~0. Summarizing: 

(4) z G Rm, zA gO, zC = 0. 

Note that if 2 has a nonzero component, then infinitely many Xk's 
must have the same component nonzero, this follows from the fact 
that z is the limit of Xk/\ Xk\. As a consequence, if {X*,} is any sequence 
of real numbers, then j {xk+\kz\ \ S \ {%k} \. If zA^O, and a'', 
j= 1, • • • , w, denotes thejth colunn of A> let 

( Zkdf \ 

Xk = max \ j = 1, • • • , n and zaJ' < 0> . 
I zai ) 

Then we may replace, in (3), Xk by xk+\kZ because \kZa3'+Xka'S0 for 
all j , and (xk+\kz)A ^ 0 , also sC = 0 and thus (xk+\kz)C=XkCt 

(xk+^kz)C(xk+\kz)T = XkCx%^>l. However each (xk+\kz)A has at 
least one more zero component than XkA, contradicting the minimal
ity of | {xk} | + | {xkA} |. Thus, zA~0 and we may replace, in (3), 
Xk by Xk+\kZ for an arbitrary sequence {X*}. But s 5̂ 0 and we can de
fine Xfc so that x/b+XfcZ has at least one more zero component than 
Xk has, thus | {tffc+Xfcz} | < | {xk} |. However, (xk+\kz)A =XkA, and 
| {(xk"V^kz)A } | = | {xkA } |, contradicting the minimality assump
tion, q.e.d. 

Lastly, we show: 

LEMMA 5. UC.V. 
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PROOF. Suppose u (£ V. By Lemmas 3 and 4 F is a closed convex 
set, hence there is a hyperplane which separates u strongly from V 
(see [4]). Thus there exist x£jRm and aÇzR such that 

uxT > « è vxT, all v G V. 

Now, if 7T£JR+ then V = TTAT is in V (taking x = 0 in the definition of 
V). Thus xAwT = wATxTga for all T T G # + , and x ^ g O , x G E \ Also 
v — 0 is in V, so that a ^ O . If uÇzU then 0 ^ a < ^ x r ^ ( x C x r ) 1 / 2 , thus 
tfCxr>0 and 

xC 

{xCxTyi* 

consequently, 

ev, 

xCx> 

(xCxTy2 > a è = (*<W* 
(#C#r)1/2 

a contradiction. Thus u&U. q.e.d. 
Afote. A direct application of Lemmas 2 and 5 yields the theorem 

stated at the beginning. 
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