RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

SUPPORTS OF A CONVEX FUNCTION ${ }^{1}$

BY E. EISENBERG
Communicated by J. V. Wehausen, January 20, 1962
Let C be a real, symmetric, $m \times m$, positive-semi-definite matrix. Let $R^{m}=\left\{\left(x_{1}, \cdots, x_{m}\right) \mid x_{i}\right.$ is a real number, $\left.i=1, \cdots, m\right\}$, and let $K \subset R^{m}$ be a polyhedral convex cone, i.e., there exists a real $m \times n$ matrix A such that $K=\left\{x \mid x \in R^{m}\right.$ and $\left.x A \leqq 0\right\}$. Consider the function $\psi: K \rightarrow R$ defined by $\psi(x)=\left(x C x^{T}\right)^{1 / 2}$ for all $x \in K$. We wish to characterize the set, U, of all supports of ψ, where

$$
\begin{equation*}
U=R^{m} \cap\left\{u \mid x \in K \Rightarrow u x^{T} \leqq\left(x C x^{T}\right)^{1 / 2}\right\} \tag{1}
\end{equation*}
$$

Let $R_{+}^{n}=R^{n} \bigcap\{\pi \mid \pi \geqq 0\}$ and consider the set
(2) $V=\left\{v \mid \exists x \in R^{m}, \pi \in R_{+}^{n}\right.$ and $\left.v=\pi A^{T}+x C, x C x^{T} \leqq 1, \quad x A \leqq 0\right\}$.

We shall demonstrate:
Theorem. $U=V$.
We first show:
Lemma 1. $x, y \in R^{m} \Rightarrow\left(x C y^{T}\right)^{2} \leqq\left(x C x^{T}\right)\left(y C y^{T}\right)$.
Proof. If $x, y \in R^{m}$ consider the polynomial $p(\lambda)=\lambda^{2} x C x^{T}+2 \lambda x C y^{T}$ $+y C y^{T}=(x+\lambda y) C(x+\lambda y)^{T}$. Since C is positive-semi-definite, $p(\lambda) \geqq 0$ for all real numbers λ, and thus the discriminant of p is nonpositive, i.e.,

$$
4\left(x C y^{T}\right)^{2}-4\left(x C x^{T}\right)\left(y C y^{T}\right) \leqq 0
$$

As an immediate application of Lemma 1 we show:
Lemma 2. $V \subset U$.

[^0]Proof. Let $v \in V$, then there exist $x \in R^{m}, \pi \in R_{+}^{n}$ such that $v=\pi A^{\boldsymbol{T}}$ $+x C, x C x^{T} \leqq 1$. Now if $y \in R^{m}, y A \leqq 0$, then $v y^{T}=y A \pi^{T}+x C y^{T}$ and $v y^{T} \leqq x C y^{T}$, because $y A \leqq 0, \pi^{T} \geqq 0$ and $y A \pi^{T} \leqq 0$. Thus, $v y^{T}$ $\leqq\left(x C x^{T}\right)^{1 / 2}\left(y C y^{T}\right)^{1 / 2}$, by Lemma 1 , and $v y^{T} \leqq\left(y C y^{T}\right)^{1 / 2}$, because $x C x^{T}$ $\leqq 1$. Thus, $v \in U$. q.e.d.

From the fact that C is positive-semi-definite, it follows that:
Lemma 3. The set V is convex.
Proof. If $x_{k} \in R^{m}, \pi_{k} \in R_{+}^{n}, x_{k} A \leqq 0, u_{k}=\pi_{k} A^{T}+x_{k} C, x_{k} C x_{k}^{T} \leqq 1$, $\lambda_{k} \in R_{+}$for $k=1,2$ and $\lambda_{1}+\lambda_{2}=1$, then: $\lambda_{1} u_{1}+\lambda_{2} u_{2}=\left(\lambda_{1} \pi_{1}+\lambda_{2} \pi_{2}\right) A^{T}$ $+\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) C, \quad\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) A \leqq 0, \quad \lambda_{1} x_{1}+\lambda_{2} x_{2} \in R^{m}, \quad \lambda_{1} \pi_{1}+\lambda_{2} \pi_{2} \in R_{+}^{n}$, and

$$
\begin{aligned}
& \left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) C\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)^{T}-1 \\
& \leqq\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) C\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)^{T}-\lambda_{1} x_{1} C x_{1}^{T}-\lambda_{2} x_{2} C x_{2}^{T} \\
& =-\lambda_{1} \lambda_{2}\left[x_{1} C x_{1}^{T}-2 x_{1} C x_{2}^{T}+x_{2} C x_{2}^{T}\right] \\
& =-\lambda_{1} \lambda_{2}\left(x_{1}-x_{2}\right) C\left(x_{1}-x_{2}\right)^{T} \leqq 0,
\end{aligned}
$$

because C is positive-semi-definite. q.e.d.
Lemma 4. The set V is closed.
Proof. Let $\left\{w_{k}\right\}$ be a sequence with $w_{k} \in R^{m}, k=1,2, \cdots$. We define the (pseudo) norm of w_{k}, denoted $\left|\left\{w_{k}\right\}\right|$, to be the smallest non-negative integer p such that there exists a k_{0} and for all $k \geqq k_{0}$, x_{k} has at most p nonzero components. Now, suppose u is in the closure of V, i.e., there exist sequences $\left\{u_{k}\right\},\left\{\pi_{k}\right\}$ and $\left\{x_{k}\right\}$ such that

$$
\begin{align*}
& \pi_{k} \in R_{+}^{n}, \quad x_{k} \in R^{m}, \quad u_{k}=\pi_{k} A^{T}+x_{k} C, \\
& x_{k} A \leqq 0 \text { and } y_{k} C x_{k}^{T} \leqq 1, \tag{3}
\end{align*} \quad k=1,2, \cdots
$$

Suppose the sequence $\left\{x_{k}\right\}$ is bounded, then we may assume, having taken an appropriate subsequence, that for some $x \in R^{m},\left\{x_{k}\right\} \rightarrow x$ and thus, by (3), $x A \leqq 0$ and $x C x^{T} \leqq 1$. Now, $y A \leqq 0 \Rightarrow u_{k} y^{T}-x_{k} C y^{T}$ $=\pi_{k} A^{T} y^{T}=y A \pi_{k}^{T} \leqq 0$, all $k \Rightarrow u y^{T}-x C y^{T} \leqq 0$. Thus the system,

$$
\begin{aligned}
y & \in R^{m}, \\
y A & \leqq 0 \\
(u-x C) y^{T} & >0,
\end{aligned}
$$

has no solution and by the usual feasibility theorem for linear inequalities (see e.g. [4] or [5]) the system:

$$
\begin{gathered}
\pi \in R_{+}^{n} \\
\pi A^{\boldsymbol{T}}=u-x C
\end{gathered}
$$

has a solution, and thus $u \in V$.
We have just demonstrated that if $\left\{x_{k}\right\}$ is bounded, then $u \in V$. Since $\left|\left\{x_{k}\right\}\right|+\left|\left\{x_{k} A\right\}\right| \leqq m+n$, it is always possible to choose $\left\{x_{k}\right\}$ and $\left\{\pi_{k}\right\}$ satisfying (3) and such that $\left|\left\{x_{k}\right\}\right|+\left|\left\{x_{k} A\right\}\right|$ is minimal. We shall show next that if $\left\{x_{k}\right\},\left\{\pi_{k}\right\}$ are so chosen, then $\left\{x_{k}\right\}$ is indeed bounded, thus completing the proof. Suppose then that $\left\{x_{k}\right\}$ is not bounded, i.e., \exists a subsequence such that $\left|x_{k}\right|=\left(x_{k} x_{k}^{T}\right)^{1 / 2} \rightarrow \infty$, and we may assume that $\left|x_{k}\right|>0$ for all k. Let

$$
z_{k}=\frac{x_{k}}{\left|x_{k}\right|}, \quad \quad k=1,2, \cdots
$$

then $\left\{z_{k}\right\}$ is bounded and we may assume that there is a $z \in R^{m}$ such that the z_{k} converge to z and $|z|=1$. From (3) it follows that $z_{k} A \leqq 0$ and $z_{k} C z_{k}^{T} \leqq 1 /\left|x_{k}\right|$ for all k. Thus, $z A \leqq 0$ and $z C z^{T} \leqq 0$. But then, from Lemma $1, z C y^{T}=0$ for all $y \in R^{m}$, and $z C=0$. Summarizing:

$$
\begin{equation*}
z \in R^{m}, \quad z A \leqq 0, \quad z C=0 \tag{4}
\end{equation*}
$$

Note that if z has a nonzero component, then infinitely many x_{k} 's must have the same component nonzero, this follows from the fact that z is the limit of $x_{k} /\left|x_{k}\right|$. As a consequence, if $\left\{\lambda_{k}\right\}$ is any sequence of real numbers, then $\left|\left\{x_{k}+\lambda_{k} z\right\}\right| \leqq\left|\left\{x_{k}\right\}\right|$. If $z A \neq 0$, and a^{i}, $j=1, \cdots, n$, denotes the j th colunn of A, let

$$
\lambda_{k}=\max \left\{\frac{z_{k} a^{j}}{z a^{i}} j=1, \cdots, n \text { and } z a^{j}<0\right\}
$$

Then we may replace, in (3), x_{k} by $x_{k}+\lambda_{k} z$ because $\lambda_{k} z a^{j}+x_{k} a^{i} \leqq 0$ for all j, and $\left(x_{k}+\lambda_{k} z\right) A \leqq 0$, also $z C=0$ and thus $\left(x_{k}+\lambda_{k} z\right) C=x_{k} C$, $\left(x_{k}+\lambda_{k} z\right) C\left(x_{k}+\lambda_{k} z\right)^{T}=x_{k} C x_{k}^{T} \leqq 1$. However each $\left(x_{k}+\lambda_{k} z\right) A$ has at least one more zero component than $x_{k} A$, contradicting the minimality of $\left|\left\{x_{k}\right\}\right|+\left|\left\{x_{k} A\right\}\right|$. Thus, $z A=0$ and we may replace, in (3), x_{k} by $x_{k}+\lambda_{k} z$ for an arbitrary sequence $\left\{\lambda_{k}\right\}$. But $z \neq 0$ and we can define λ_{k} so that $x_{k}+\lambda_{k} z$ has at least one more zero component than x_{k} has, thus $\left|\left\{x_{k}+\lambda_{k} z\right\}\right|<\left|\left\{x_{k}\right\}\right|$. However, $\left(x_{k}+\lambda_{k} z\right) A=x_{k} A$, and $\left|\left\{\left(x_{k}+\lambda_{k} z\right) A\right\}\right|=\left|\left\{x_{k} A\right\}\right|$, contradicting the minimality assumption. q.e.d.

Lastly, we show:
Lemma 5. $U \subset V$.

Proof. Suppose $u \notin V$. By Lemmas 3 and $4 V$ is a closed convex set, hence there is a hyperplane which separates u strongly from V (see [4]). Thus there exist $x \in R^{m}$ and $\alpha \in R$ such that

$$
u x^{T}>\alpha \geqq v x^{T}, \quad \text { all } v \in V
$$

Now, if $\pi \in R_{+}^{n}$ then $v=\pi A^{\boldsymbol{T}}$ is in V (taking $x=0$ in the definition of $V)$. Thus $x A \pi^{T}=\pi A^{T} x^{T} \leqq \alpha$ for all $\pi \in R_{+}^{n}$, and $x A \leqq 0, x \in K$. Also $v=0$ is in V, so that $\alpha \geqq 0$. If $u \in U$ then $0 \leqq \alpha<u x^{T} \leqq\left(x C x^{T}\right)^{1 / 2}$, thus $x C x^{T}>0$ and

$$
v=\frac{x C}{\left(x C x^{T}\right)^{1 / 2}} \in V
$$

consequently,

$$
\left(x C x^{T}\right)^{1 / 2}>\alpha \geqq \frac{x C x^{T}}{\left(x C x^{T}\right)^{1 / 2}}=\left(x C x^{T}\right)^{1 / 2}
$$

a contradiction. Thus $u \notin U$. q.e.d.
Note. A direct application of Lemmas 2 and 5 yields the theorem stated at the beginning.

References

1. E. W. Barankin and R. Dorfman, On quadratic programming, Univ. California Press, Berkeley, Calif., 1958.
2. G. B. Dantzig, Quadratic programming: a variant of the Wolfe-Markowitz algorithms, Operations Research Center, Univ. California, Research Report 2, Berkeley, Calif., 1961.
3. E. Eisenberg, Duality in homogeneous programming, Proc. Amer. Math. Soc. 12 (1961), 783-787.
4. W. Fenchel, Convex sets, cones, and functions, Princeton Univ. Lecture Notes, Princeton, N. J., 1953.
5. D. Gale, H. W. Kuhn and A. W. Tucker, Linear programming and the theory of games, Activity Analysis of Production and Allocation, Cowles Commission Monograph 13, New York, 1951, pp. 317-329.
6. H. W. Kuhn and A. W. Tucker, Non-linear programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley, Calif., 1951, pp. 481-492.
7. H. Markowitz, Portfolio selection-an efficient diversification of investments, Wiley, New York, 1959.
8. P. Wolfe, A duality theorem for non-linear programming, The RAND Corporation, Report P-2028, Santa Monica, Calif., 1960.

University of California, Berkeley

[^0]: ${ }^{1}$ This research was supported in part by the Office of Naval Research under contract Nonr-222(83) with the University of California. Reproduction in whole or in part, is permitted for any purpose of the United States Government.

