
SOME RECENT DEVELOPMENTS IN THE THEORY OF 
PARTIAL DIFFERENTIAL EQUATIONS 
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1. Introduction. When I sent in the title of this talk, I thought it 
appropriate for me, as the first speaker in this general session of the 
Society, to make some general remarks about the whole field of par­
tial differential equations for the benefit of those who are not familiar 
with the field. I soon found out that a comprehensive survey of the 
field would not be possible in 35 minutes. A glance at a few sections 
in Mathematical Reviews on this subject will indicate why. 

Therefore what I shall do in this lecture is to speak briefly on a 
few selected problems of general interest with which I have not had 
much direct contact and then give more and more details about those 
problems in elliptic differential equations and the calculus of varia­
tions with which I am more familiar. Thus, I shall say very little 
about hyperbolic, parabolic, and unclassified equations, other than 
to define them in the next section. I give the following justifications 
for these omissions: (a) lack of time, (b) the fact that many of the 
methods and ideas of functional analysis, etc., which I shall illustrate 
in connection with elliptic equations also apply to hyperbolic and 
parabolic ones, and (c) there are extensive treatments of hyperbolic 
equations by Leray [36] and Gârding [25] who are now jointly writ­
ing a book on that subject; also there is a self-contained set of lecture 
notes by Yosida [93] which exploits the many connections between 
parabolic equations and the theory of semi-groups. 

During the past twelve years, there has been increasing activity 
in the writing of books and sets of notes on this subject, beginning 
with the 1950 book by I. G. Petrowsky, a translation of which was 
published in 1954 [72]. Since then the books by Miranda (elliptic 
type only) [42], Duff [20], Rosenbloom [75], and J. L. Lions [40] 
have appeared; that by Rosenbloom contains 734 references, about 
1/3 of which are to papers published between 1953 and 1957! Besides 
these, I know of books which are now being written by Hörmander, 
Browder, and myself which should appear shortly. No doubt there 
will be some small overlap between these books but, taken together, 
they should cover a large part of the field except possibly for applied 
mathematics and computation. I t is regrettable that I shall not be 
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able to speak about these latter subjects, but I don't feel qualified; 
moreover, my very limited experience with the applied field suggests 
that interest in the applications is often a principal motivation for 
those working in it. I shall however speak later about some interesting 
mathematical applications. In the bibliography, I list a selection of 
sets of notes, proceedings of symposia, and expository articles; other­
wise I list only papers referred to in the text and, of course, the 
bibliography is not complete. 

2. Notation and terminology. For the most part, I shall use fairly 
standard notations : The boundary of a domain G is denoted by dG. A 
function ^GC^(G), 0 < / z ^ l , iff u can be extended to be of class Cm 

on a domain D G and u and all its derivatives of order 5£ m satisfy a 
uniform Holder condition with exponent ju (Lipschitz if /*= 1) on G; 
u(EC%c(G) iff u(EzC™(G) and the support of u is in G. Diffeomorphisms 
(regular differentiable homeomorphisms) and domains of class C™ are 
then defined as usual. All the definitions carry over to C™{G), etc. If <j> 
is a function, V0 denotes its gradient; if ^ is a vector | ^ | denotes its 
length; if S is a set | S\ denotes its measure. 

We shall be speaking of (partial) differential operators of the form 

(2.1) L(x, D)u = X aa(x)D«u 

where 

x = (x1, • • • , xv), a = («i, • • • , av) 

(a. à 0, € = 1, • • • , v) 

(2.2) | a\ = ax + • • • + aVy ifu = # ? • • • D?u, 

Deu = d u/(dx ) , D u = u iî \ a\ = 0, 

the ac, of course, being integers ^ 0 . We usually assume that x varies 
over a domain G in the real j>-space, but may allow u and the aa to 
be complex-valued. The principal part of the operator L is the oper­
ator 

(2.3) PL(x,D)= X da(x)D«. 

When speaking of systems of equations, (2.1) can be interpreted to 
stand for the vector operator 

(2.4) £ Ljk(x, D)u» (j - 1, • • • , N, u = u\ - - • , uN) 

where the operators Ljk may be of different orders; systems in which 
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the order of Ljh is ÛSj+tk have been studied by various authors 
([65; 19; 58] for example) ; if the Sj are all 0, the system is of order h 
in uk in this case. In the case of a vector operator L, its principal 
part is the matrix Lojk in which L0/fc = 0 or is the part of Ly& which is 
of order exactly Sj+tk. 

We define the characteristic polynomial of the single operator L to be 

PL(*,t) = £ *«(*)r (r = fi, • • •, r>), 
(2.5) ,al==m 

f - f? • • • tT. 
For the vector operator (2.4), we define PL(x, f) to be the deter-
minant of the polynomials L0jk(xy f). A hypersurface s (x )=0 is said 
to be characteristic a t #o iff 

(2.6) PL[x0l Vs(*0)] = 0. 

In the analytic case this corresponds to a situation in which the 
hypotheses of the corresponding Cauchy-Kovalewsky theorem are 
not satisfied. The operator (2.1) (or (2.4)) is said to be elliptic at 
Xo iff PL(xo, f)s^0 for all real f =^0. The single operator (2.1) is said 
to be hyperbolic (with respect to the first coordinate) for x in a do­
main G iff 

m 

(2.7) PL(x, f) = a0(x) I I [fi - M*, fi )], flo(«) ^ 0, 

where the Xy are homogeneous of degree 1 in f ƒ = (f 2, • • • ,$%) and 
are real and distinct if f/ s^O. The operator (2.1) is parabolic (with 
respect to the first coordinate) iff 

(2.8) L(x, D) = A - Li(x, Z)2, • • • , A ) 

where Li is elliptic in X>2, • • • , £>„. In the cases of the hyperbolic and 
parabolic operators, the definitions could, of course, be generalized so 
as to include operators which assume their respective forms after an 
appropriate transformation of coordinates. The Laplace, wave, and 
heat equation operators 

D\+ D\ + D\ + D\, D\- D\- D\ - D\ and Dx - D\ - D\ - ü\ 
(v = 4) 

are well-known examples of operators of elliptic, hyperbolic, and 
parabolic types, respectively. 

A unifying influence which has, at the same time, contributed 
greatly to the development of the subject is the increasing use of 
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functional analysis, particularly the theories of Banach, Hubert and 
other spaces, the Fourier transform, the Schwartz theory of distribu­
tions, and inequalities of Sobolev type. The use of the Fourier trans­
form, together with a differential geometry technique involving a 
partition of unity, was at the root of Gârding's now famous paper on 
the Dirichlet problem for higher order equations [24] (see also [23; 
6; 90 ]) which really started the very rapid advance of the last 
10-12 years. 

There are certain Banach and Hilbert spaces of distributions, de­
noted by H™(G) (the Sobolev [83] spaces W™), which have played a 
particularly important role in differential equations, potential theory 
and the calculus of variations. Actually Beppo Levi [37] started to 
study essentially these functions, where ra= 1 and p — 2, in 1906 and 
essentially the same functions were studied by many other people 
over a long period of years (see [55 ] for some discussion and refer­
ences). We shall illustrate the use of these functions in connection 
with elliptic equations and the calculus of variations but they have 
been used with great success by Leray and Gârding [36; 25] in their 
work on hyperbolic equations and by Friedrichs in his interesting 
work on equations independent of type [22]. A distribution 
u(EH™(G) iff u and its distribution derivatives of order ^m cor­
respond to actual functions in LP; i.e., there exist functions^»GLp(G)y 

0 ^ \a\ ^ W , such that 

(2.9) I <t>a(x)g(x)dx = (-l)!«l I <l>o(x)Dag(x)dx 
J G J G 

= (-i)MM(z?«g), gecTiG). 
If we define ||tt||"§0 by 

(2.10) ( IMPACT Z Ca\<t>a{x)\*\ndx 

for instance (there are many topologically equivalent norms), then 
H^iG) becomes a Banach space (here we can take C a = | a\ !/(ai!) • • • 
(a„!) if desired). The subspace H^(G) is the closure according to the 
norm (2.10) of C"(S); it is known that \\u\\%, defined by 

(2 .11 ) (\\u\\m
po)P = f [ E Ca\^x)\*T%dx 

J G L \a\-m J 

is equivalent to the norm (2.10) for # £ # $ ( £ ? ) . The space H%(G) 
corresponds roughly to the vanishing of u and its derivatives of order 
ètn — l on G; no boundary term enters into the relation between 
the Fourier transform of u and its derivatives Dau with 0 ^ \a\ $>m. 

file:///a/-m
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We sometimes say that u has 0 Dirichlet data (of order m) on dG. 
In the case p = 2, it is clear how to introduce inner products (( )) 
and (( ))o in the respective spaces. The definition of the spaces 
H™(G) has been extended to cases where G may be a manifold and 
m may be any real number (see [10; 5; 39; 40 ], etc.) and Lions [39] 
has been able to obtain very interesting results concerning the 
Navier-Stokes equations by using such spaces. And the spaces H™(G) 
with m negative have been used to obtain easy proofs of the differ­
entiability of the solutions of elliptic equations in the C00 case (see 
[33 and 66]). 

3. Some questions which are independent of type. It is not difficult 
to see that most differential equations of higher order and/or many 
variables are not of any of the three types: elliptic, hyperbolic, or 
parabolic. In this section we discuss briefly some questions which 
are independent of type. 

A. T H E UNIQUE CONTINUATION THEOREM. In 1933, T. Carleman 

[ l2] announced (see also [13]) that any solution of an elliptic sys­
tem of the first order of two equations for two functions of two vari­
ables which possesses a zero of infinite order vanishes identically. 
This result was recently extended by N. Aronszajn [3; 3a] first to a 
single elliptic equation of the second order with real coefficients 
GCj(G) and then to the second order systems arising from harmonic 
exterior differential forms [4]. Shortly afterwards and independently, 
H. O. Cordes [ l5] proved Aronszajn's first result in the case of C2 

coefficients. The results of Aronszajn and Cordes imply the unique­
ness of the solution of the Cauchy problem (not the existence, of 
course) for the equations treated. The Cauchy problem for a single 
operator of order m is that of showing the existence and/or unique­
ness in the small of a solution of the given equation which assumes 
given "Cauchy data" (values of the function and first m — 1 normal 
derivatives) on a given hypersurface. Calderón [9] has proved the 
uniqueness of the solution of the Cauchy problem with data on part 
of the hy perplane cr • x = c f or arbitrary operators L with real principal 
parts and no multiple characteristics in the sense that PL(x, /o"+f) 
has no multiple zeros in / (real or complex) when f is real and 5^0. 
For elliptic equations, Hörmander [29a] has recently improved Cal-
deron's results. But counterexamples have been found by Myskis 
[60], Landis [32], Di Giorgi [17], Cohen [14], and Plis [73]. In these 
examples, either the coefficients were not in C00 or the equations were 
not elliptic. Very recently, Plis [73a] and Cohen [l4a] have found 
counterexamples where the equation is elliptic and the coefficients 
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B. T H E NONEXISTENCE OF SOLUTIONS. In 1957, H. Lewy [38] 
published a simple example of a differential equation Lu~f (L ana­
lytic, /GC00) which has no solution in any neighborhood however 
small. On the other hand, any equation of this sort in which L has 
constant coefficients always has solutions. Recently, Hörmander [29] 
has proved the following striking result: Let us write the operator 
L in the form (2.1) where, however, D^u means (~i)PdPu/(dx<y, let 
L be the operator obtained by replacing the coefficients of L (in this 
meaning of D%) by their conjugates, and let C2m-i be the part of order 
exactly 2m — 1 in the commutator LQLQ — LQLQ, where LQ~PL, etc. 
Then (a) if Lu =ƒ has a distribution solution on G for each ƒ G Cc°° (G), 
then C(x, £ ) = 0 whenever PL(x, £ )=0 , xGG, and £E.RV and (b) if 
this last condition does not hold on any nonvoid open subset co of G, 
then there is an /GC00(G), such that the Daf(x)-*0 as x—»3G, for 
which there is no solution of Lu = ƒ on any such co. In the same paper, 
he discusses some interesting cases in which solutions do exist. 

C. HYPO-ELLIPTICITY. An operator L with C°° coefficients is said to 
be hypo-elliptic iff every solution u of Lw = 0GC'oo(G). In case L has 
constant coefficients, Hörmander [28] showed that a n.a.s.c. is that 
£(£)—»°° uniformly as Im f—»<*> with Re f bounded; this class in­
cludes the elliptic and parabolic operators. Some interesting classes 
of hypo-elliptic operators with variable coefficients (including all 
elliptic ones) have been defined (see Nieto [63]) but their general 
characterization is still an open problem. 

4. Elliptic equations and the calculus of variations. I shall begin 
by excluding a few subjects from the discussion. First of all, although 
the recent work on lower and upper bounds for eigenvalues is very 
important and includes much elegant and ingenious mathematics, I 
shall not speak of this subject except to mention the important work 
of Weinstein [91 ] the first part of which was published in 1937, the 
work on symmetrization published by Polya and Szegö [74] in 1945, 
and more recent papers by Payne, Weinberger, and others ([68; 70; 
67; 69], etc.). I shall omit the interesting work of L. C. Young, W. H. 
Fleming and others (see [92], for instance) on generalized surfaces, 
since this work in the calculus of variations is too far removed from 
partial differential equations. I shall omit discussion of the work of 
Bers and Ahlfors on Riemann surfaces and the Morse theory [77a] 
for the same reason. There are other related topics such as pseudo-
analytic functions, kernel functions, etc., on which books have al­
ready been written. Finally, I shall also omit potential theory since 
our third speaker will touch on this topic. 

I shall now speak about the existence and differentiability theory 
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for elliptic equations. I remark first that if *>>2, the degree of the 
characteristic polynomial (for a linear elliptic equation or system) 
must be even, and if £±77, the equation PL{x, %+zri) = 0 (of degree 2m 
in z) has exactly m roots 2 with positive imaginary part; in this case 
we say that the equation or system is properly elliptic. If *> = 2, an 
elliptic equation need not be properly elliptic as the example 

d2w 1 / d . d\2 

4 \dx dy/ dz2 4 \dx dy 

shows; that equation has among its solutions all functions of the 
form w—f(z)(zz —-1), where ƒ is analytic, all of which vanish on 
x2+y2 = l. 

I shall begin by sketching Gârding's solution [24] of the Dirichlet 
problem for a single equation 

Lu(x) + \u(x) = ƒ(#), 
(4-1) 

x on G, Dn
Ju(x) — 0, x on dG, j = 0, • • • , m — 1, 

of order 2m. Let us assume first of all, that L = PL, the aa (see (2.1)) 
are real constants. Suppose u is a solution, multiply (4.1) by vÇzC™{G) 
and integrate by parts in order to get rid of derivatives of u higher 
than those of the mth order. One obtains 

B(Uj v) + \(u, v)2 = L(v)9 

( 4 ' 2 ) 

B(u,v)= I X) hyDHD^udx, L(v) = I (-l)mfvdx. 
J G p,y J g 

By approximations, (4.2) holds for all v^H^(G). The integrations 
by parts are not unique, but if we take the Fourier transform of 
(4.2), we obtain 

ƒ 00 p 00 

£ w y *(y) (Ky))-dy = J Z ««r̂ OO (Ky))~dy. 
Obviously 
(4.4) \B(u,v)\ £ lfi||«||7o-|M|7o. 

From the ellipticity, etc., we obtain 

«i I y |2m g Z) W y = X) ««y" â -WI y l2m, 
(4.5) f\xTufd*- r\yF\û(y)fdy. 

G 

From this, it follows that 
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(4.6) B(u, u) è *ii||ft|| , \\u\\ = ||«||To. 

The fact (4.6) is not at all evident from (4.2) since the ellipticity con­
dition (if m>\) in (4.5) does not imply that the integrand in (4.2) 
with v = u is positive definite. The fact emerged clearly only because 
of the use of the Fourier transform. Actually Van Hove [89] had ob­
tained a corresponding result for second order systems. 

In case the coefficients bpy in (4.2) are variable but real and lower 
order terms are allowed, (4.4) still holds; if the bpy with |j8| = | T | =m 
are continuous, (4.6) can be replaced by 

(4.7) B(u, u) ^ fa - e)(|H|T,o)2 - C(e)(|H|°2)
2 

which is known as Gârding's inequality [24]. I t is proved by using the 
results above and a partition of unity. By Hilbert space theory, it 
follows that there are transformations T and U and an element 
wEH£(G) such that 

B(u, v) = ((Tu, v))™o, I uvdx = ((Uu, v))™0, 
(4.8) J G 

L(v) = ((w, v))To; 

T is bounded (from (4.4)) and it follows from compactness theorems 
for H£ functions that U is completely continuous. From (4.7), it 
follows that there is a real Ao so large that 

((Tu + XQUU, «))20 = B(u, u) + Xo(||w||2) à — Wi(||«||?o) 

for all u. I t follows from the Lemma of Lax and Milgram [33a] that 
the operator T+\U is invertible for all except an isolated set of 
eigenvalues of X. 

Now, if the coefficients in L are variable and lower order terms 
are present, (4.1) cannot be reduced to (4.2) unless the coefficients 
aa with \a\ >m^C[a^m-l(G) a t least. Then (4.1) can be reduced to 
(4.2) by integration by parts in such a way that the fe^GCi^'"1 for 
|]8| > 0 . The idea of the existence theory is to replace (4.1) by (4.2), 
which is, in turn equivalent to the equation 

(4.9) Tu + \Uu = w. 

The results of the last paragraph show that (4.9) is solvable accord­
ing to the usual Fredholm alternative. Let us pick a X for which this 
is solvable and absorb the term \Uu into Tu. The solution u^H^(G)y 

whereas it is desired for uÇ:Hlm(G). To show that u has more dériva-
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tives, we proceed as follows: If certain coefficients are differentiable, 
we may choose a vÇ: C™ (G), replace v by h~l [v(x — hey) — v(x)] (ey being 
a unit vector in the xy direction, 7 = 1 , • • • , v)y and change variables 
to eliminate terms in v(x — hey); the result is that 

Uh(x) = h~~l[u(x + hey) — u(x)] 

satisfies an equation like (4.2) (with G replaced by D' with D'C.G) 
where the right side also contains terms ^ba(D

av)~~ where | a | = 1 ; 
it is not necessary that ƒ be differentiable, but if not, it contributes 
to one of these latter terms. By replacing v again by f 2mUh and setting 
U=-l'muh where r £ C ( G ) a n d ?(*)«! o n £>(DCD') one obtains, by 
using bounds derivable from (4.2), (4.5), and (4.6) on the new equa­
tions that the ||^||™£ are uniformly bounded and that one can let 
h—>0 and obtain an equation like (4.2) for the derivative Dyu, which 
holds on any D with DC.G. This may be continued as long as the 
coefficients have the requisite derivatives; if they are of class C00, it 
follows from a Sobolev lemma that u G C00. In case the bpy 

G.Clfi[-\\0\ > 0 ) , u(EH*m(D) on any D with DCG. If G is of class 
C2m, a boundary neighborhood can be mapped regularly so a part of 
dG corresponds to a part of xv = 0; the difference quotient procedure 
above can then be applied in the tangential directions. Thus (by 
using some additional tricks) it can be shown that uÇzHlm(G). By 
using the well-known results of Calderón-Zygmund [ l l ] , it can be 
shown that u&Hlm(G) for any p. If G<EC2™ and the a^C^^ÇG), 

t h e n ^ G C * ( G ) -
The procedure in the preceding paragraph clearly requires that 

the aa with \a\ >m be differentiable \a\ — m times, whereas in the 
case of a single second order equation no such restriction is necessary. 
In June of 1958 [52], I announced that I was able to remove the 
restrictions. I discussed this with Browder and Nirenberg who each 
supplied a proof after some thought; Nirenberg's proof is to be found 
in [2, pp. 693-695] and Browder's is in [7a]. The result extends to 
the case of the Dirichlet problem for the so-called "strongly elliptic" 
systems (see [65]). 

More general boundary value problems of the form 

(4.10) Lu = ƒ in G, BjU = 0 on dG, j = 1, • • • , m, 

where L is properly elliptic with continuous leading coefficients and 
the Bj are operators of order r3<2m (sufficiently smooth—details 
omitted here) have been studied. If G is bounded and of class C2m 

and the Bj and L satisfy a certain "complementing condition" of an 
algebraic nature (see, for example, [7 or 2, p. 626]), on ÖG, then it 
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has been shown essentially simultaneously by Agmon, Browder, 
Doughs, and Nirenberg that any u(E.H%m(G) which satisfies the 
boundary conditions in (4.10) satisfies 

(4.11) | | « | & â C ( | | i « | | ^ + | |«| |î,0). 

If G is of class C2™ and the corresponding Holder continuity require­
ments ( 0 < J U < 1 ) are put on the coefficients, then any u(E.C%m(G) 
which satisfies the boundary conditions in (4.10) satisfies 

(4.12) \\\u\\\To^C(\\\Lu\\\:,0 + \\u\\lo). 

These a priori bounds show that, for each X, the null space of the 
operator L+\I (assuming BjU = 0) is finite dimensional. However, 
for the general L and Bjf it is not known whether there is any value 
a t all of X for which L+X7 is invertible (with those boundary condi­
tions). In order to get around this difficulty, Schechter [76; 77] and 
Browder [7] have considered an adjoint problem with adjoint bound­
ary conditions and have found that the given problem is solvable iff 
the null space of the adjoint problem is 0-dimensional. Schechter 
[77] and Browder [7] have considered other kinds of boundary condi­
tions including some mixed ones. Browder [7] has carried over the 
estimates above for certain unbounded domains and has obtained 
some extensive corresponding results for parabolic equations. Ag­
mon [ l ] has proved a generalized maximum principle for the solu­
tions of elliptic equations which extends the one of Miranda [43] to 
the Dirichlet problem for the general elliptic operator. 

Progress in nonlinear elliptic equations has been very slow. In 
1938-1939, Leray published two very interesting papers [34; 35] on 
single nonlinear equations in two variables. In 1953, Nirenberg [64] 
proved the existence of solutions of quasi-linear differential equa­
tions in two variables of the form 

a(x, y, z, zx, zy)zxx + 2bzxy + czvy = 0 

where the coefficients are bounded and satisfy 

a? + 2bfr + crj2 à Witt2 + V2), m > 0. 

Some very interesting results concerning minimal surfaces and equa­
tions of minimal surface type in two dimensions have been obtained 
by Finn [20a; 20b], Bers [5a], H. Jenkins [29b], and others. Addi­
tional differentiability of the solutions of certain nonlinear equations 
and systems in more variables has been proved by Nirenberg [19] 
and myself [44; 49]. And Petrowsky [71 ], A. Friedman [21 ], and 
I [51 ] have given proofs of S. Bernstein's theorem on the analyticity 
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of the solutions of analytic elliptic systems, the latter two proving 
analyticity at an analytic boundary for strongly elliptic systems. 
The proof of Petrowsky is long, but those of Friedman and Morrey 
are comparatively short. The results of Agmon, Doughs, and Niren-
berg [2] include a perturbation theorem for a nonlinear equation 
or system and some results of Cordes [l6] lead to a proof of the 
existence of the solution of a single quasi-linear equation of the form 

(4.13) X) <**(x, z, Vz)z, ^(x) = 0 

with given smooth boundary values on a smooth boundary provided 
that the eigenvalues Xi, • • • , X„ of the aa& matrix in (4.13) satisfy 
his Ki condition uniformly. D. Gilbarg has recently obtained an 
existence theorem (unpublished) for certain quasi-linear equations. 
Extensive results concerning such equations "in divergence form" 
have been obtained by Ladyzenskaya and Ural'tseva [31; 31a]. 

Otherwise, the variational method has successfully attacked many 
nonlinear equations and systems which are the Euler equations of 
variational problems. Many years ago [45; 46], I extended the exist­
ence theory of Tonelli (see [86; 87; 88], for instance) to the case of 
nonparametric integrals of the form 

(4.14) I(z, G) = I f(x, z, Vz)dx, x = (x\ • • • , xv), z = (z1, • • • ,zN) 
J G 

where/(x, 2, p) (p^pa, a = 1, • • • , v, i= 1, • • • , N) is continuous in 
(x, 2, p) and convex in p for each (x, z) with 

(4.15) f(x, z, p) ^ MP), Hm I p \~MP) = + «> ; 
|p|->°o 

the existence theorems included some allowing variable boundary 
values. If N= 1, it is well known that a minimizing function may not 
exist if ƒ is not convex in p. For N>1, the situation is more compli­
cated; I have investigated the more general integrals [48], but the 
results are not completely satisfactory. Serrin [79; 78; 79a] has ex­
tended my results for the case JY=1. Gel'man [26] has generalized 
some of these results to variational problems of higher order. 

At about the same time, I [45; 46] proved that any locally mini­
mizing extremal of such an integral GCi(D), in fact C%(D) if 
/GCJÎ (w^2) , for each D with DQG, provided that ƒ satisfies the 
conditions (4.17) below with fe = l and v — 2. I used those results to 
prove the differentiability of my in-the-large solutions of the problem 
of Plateau on a Riemannian manifold [47]. Some of these results 
were generalized somewhat by Sigalov [80; 81 ] and Silova [82] with 
v still equal to 2. 
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The methods used above in the case v = 2 would not generalize and 
it was not until after the now famous results of Di Giorgi [18] and 
Nash [61 ], as simplified still further by Moser [59] that the differ­
entiability of the solutions of any nonquadratic variational prob­
lems with v>2 were proved. The Di Giorgi-Nash results concern 
equations of the form (4.2) where iV= l , m = l , the b$y are merely 
bounded and measurable, ƒ=(), and bpy — Q if either j3 or 7 = 0. Be­
tween 1958 and 1960, Stampacchia [84; 85] and I [54] generalized 
the Di Giorgi-Nash results to equations (4.2) in which lower-order 
and nonhomogeneous terms are allowed ; such equations arise in the 
differentiability theory for the solutions of variational problems. 

Ladyzenskaya and Ural'tseva [31; 31a] have shown that any 
bounded solution z of a variational problem in which ƒ satisfies the 
conditions (4.17) below (essentially) with any k> 1/2 is of class C^(D) 
for each D(ZG provided that jf£C£ for some w = 3. Stampacchia 
has recently obtained a simple result concerning variational problems 
in which f=f(p) and G is strictly convex. In the fall of 1959 a student, 
E. R. Buley, working under my direction, had obtained some results 
for integrals in which ƒ satisfies the conditions (4.16)' below. In Janu­
ary, 1960, J. Moser kindly communicated his simplification of the 
Di Giorgi-Nash results. This enabled us to obtain the results stated 
below. These results are closely related to those of Ladyzenskaya and 
Ural'tseva but the methods appear to be entirely different. 

The conditions on ƒ are as follows : ƒ £ C £ , w _ 2 , 0 < / x < l , i V = l , and 
ƒ is to satisfy some one of the following sets of hypotheses for all 
(x, z, p) : 

trnV* - K g ƒ(*, z, p) g MtV
k, 0 < mi g Mh k > 1/2, 

2 2 2 2 2k 1 

£ ( ƒ*.+/«..T+U + M ^ M,V , 
(4.i6) zc/L+/L)=gMy*-2 

(F = l + |z |2 + \p\*), 

wiF*-11 X |2 S /P.PMI> ^ M^vk~l l x K 

(4.16)' same as (4.16) with ƒ = f(x, p), V, 

nnVk - K â fix, z, p) g MlV
k, 0 < «i ^ Jfi, * £ v/2, 

•«—* 2 2 2 2k 

£ ( ƒ . + ƒ « + ƒ « * ) ^MrV , 
( 4 . 1 7 ) —-- 2 2 2 2k—I 

mtfK-i | X |2 è /p„P;xaX0 :S MxV"-11 X |2. 
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In the case of (4.16) or (4.16)' with k^l, any extremal z(zzC"(G). 
z is an extremal for the integral (4.14) iff it satisfies 

(4.18) f [f ,afPa(x, *, V*) + tf9(x, z, V)z]dx = 0, f G ct(G) ; 
J G 

any minimizing function is an extremal under any of the hypotheses 
above o n / . In the cases (4.16) or (4.16)' with l > f e > l / 2 , or (4.17) 
m/ft k^v/2, we have the following result: if z*<E.Hlt{G) and G is 
bounded, there exists a minimizing extremal s£C]ï(G) such that z — z* 
&H21cto(G). 

To see the difference between the conditions (4.16) and (4.17), we 
note that 

f(x, z, p) = aap(x, z)pap$ + 2ba(x, z)pa + c(x, z) 

satisfies (4.17) with &= 1, if aappap^ is positive definite, etc., but does 
not satisfy (4.16). 

One annoying feature of these results is that N is restricted to be 1. 
This rules out most applications to differential geometry. The re­
moval of this restriction appears to await the extension of the 
Di Giorgi-Nash-Moser results to the case of vector functions. 

In conclusion, I would like to mention a few problems in which the 
methods of differential equations or the calculus of variations have 
led to a solution. 

(i) Harmonic integrals. The variational technique was very effi­
cient in the study of harmonic integrals undertaken with Eells 
[57; 50 ]. One of the boundary problems studied in part II is not 
normal since the null space is not finite dimensional. 

(ii) Almost complex manifolds. Newlander and Nirenberg [62] 
proved by methods of differential equations that an almost complex 
manifold can be given a complex analytic structure. 

(iii) The analytic embedding of an abstract real-analytic manifold. 
The possibility of such an embedding for compact manifolds with 
given analytic metric was first proved by Bochner [8] in 1937. This 
result was generalized to noncompact manifolds with countable topol­
ogy by Malgrange in 1957 [41 ]. In 1958, I [53] proved Bochner's 
result without assuming the existence of an analytic metric. This 
result was generalized to noncompact, etc., manifolds by Grauert 
[27], using complex variable methods. My proof involved the solu­
tion of a d-Neumann problem for complex forms of degrees 0 and 1 
on certain complex manifolds; part of those results have recently been 
generalized by J. J. Kohn [30]. This leads to another nonregular 
boundary problem in differential equations of which the null space 
is not finite dimensional. 
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I t is to be hoped that these methods will prove useful in solving 
interesting problems in differential geometry and other branches of 
mathematics. However, it appears necessary to make a great deal of 
progress in both differential equations and the calculus of variations 
before they can be used extensively as tools in these other branches. 
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