RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

INVARIANT QUADRATIC DIFFERENTIALS¹

BY JOSEPH LEWITTES

Communicated by R. Bott, March 21, 1962

Let S be a compact Riemann surface of genus $g \ge 2$ and h an automorphism (conformal homeomorphism onto itself) of S. h generates a cyclic group $H = \{I, h, \dots, h^{N-1}\}$ where N is the order of h. We shall assume that N is a prime number. Let D_m for an integer $m \ge 0$ denote the space of meromorphic differentials on S and $A_m \subset D_m$ the subspace of finite analytic (without poles) differentials. We obtain representations of H by assigning to h the linear transformation of D_m into itself by $h(\theta) = \theta h^{-1}$ for every $\theta \in D_m$. It is clear that h takes A_m into itself so that by restricting to A_m we have a representation of H by a group of linear transformations of a finite dimensional vector space.

In this note we are concerned with determining some of the properties of (h), the diagonal matrix for h, considering h as a linear transformation on the 3g-3 dimensional space A_2 of quadratic differentials. Since $(h)^N = (I)$ it is clear that each diagonal element of (h) is an Nth root of unity. If $\epsilon \neq 1$ is an Nth root of unity, denote by n_k the multiplicity of ϵ^k $(k=0, 1, \cdots, N-1)$ in (h).

Let $\hat{S} = S/H$ be the orbit space of S under H. Then it is well known that \hat{S} can be given a conformal structure and the projection map $\pi: S \rightarrow \hat{S}$ is then analytic. The branch points of this covering are precisely at the t fixed points of $h, P_1, \dots, P_t \in S, t \ge 0$ —here we make essential use of the assumption that N prime—each a branch point of order N-1. Let g_1 be the genus of \hat{S} . The Riemann-Hurwitz formula reads $2g-2=N(2g_1-2)+(N-1)t$. Now clearly n_0 is the dimension of that subspace of A_2 which consists of H—invariant differentials, i.e., those satisfying $h(\theta) = \theta$.

THEOREM 1. (i) n_0 , the dimension of the space of H-invariant finite quadratic differentials, is $3g_1-3+t$.

(ii) If $n_k \neq 0$ for some k, $1 \leq k \leq N-1$, then

¹ This is a brief edited excerpt from my thesis submitted to Yeshiva University, 1962.

(*)
$$3g_1 - 3 + 2 \frac{(N-1)}{N} t \ge n_k \ge 3g_1 - 3 + \frac{(N-1)}{N} t$$

(iii) There exists k^* , $1 \leq k^* \leq N-1$, for which $n_{k^*} \neq 0$.

(iv) If $g_1 \ge 1$ then $n_0 \le 3g-5$ unless S is a surface with equation $y^2 = x^6 + Ax^4 + Bx^2 + 1$, in which case g = 2, $g_1 = 1$, $n_0 = 2 = 3g - 4 = 3g_1 - 3 + t$.

The proof of (i) is similar to the proof of (ii) given below. (iii) follows immediately from the

LEMMA. The representation $h^m \rightarrow (h)^m$, $m=0, 1, \dots N-1$, of H is faithful, i.e., $(h)^m = (I)$ implies m=0 unless g=2 and h=J, the hyperelliptic involution.

The simple proof of this lemma is in my thesis and is omitted here. (i)

(iv) is an immediate consequence of (iii) and (ii) since (*) then implies $n_{k^*} \ge 2$ unless $g_1=1$, N=2, t=2 ($g_1=1$ implies $t\ge 1$ by Riemann-Hurwitz) or $g_1=1$, t=1. But if $g_1=1$, t=1 then by (i) one has $n_0=1\le 3g-5$ for $g\ge 2$. The first exception is the case indicated in (iv) with $h: x \to -x$, $y \to y$ and fixed points on the two sheets over x=0.

To prove (ii) let $\theta \in A_2$ be such that $h(\theta) = \epsilon^k \theta$. At any fixed point $P \in \{P_1 \cdots P_t\}$ say h^{-1} : $z \to \eta z$ in terms of a suitable local parameter, $\eta^N = 1, \ \eta \neq 1$. Then we must have $\theta h^{-1} = (a_0 + a_1(\eta z) + \cdots) \eta^2 dz^2 = \epsilon^k (a_0 + a_1 z + \cdots) dz^2$. Thus $a_n = 0$ unless $n + 2 \equiv l \pmod{N}$ where $\eta^l = \epsilon^k$; $1 \leq l \leq N-1$. θ then actually has an expansion of the form at P in z,

$$\theta = (a_{l-2}z^{l-2} + \cdots + a_{kN+l-2}z^{kN+l-2} + \cdots)dz^2$$

(if $l \ge 2$; if l=1 the first term must be omitted). This then holds for every θ for which $h(\theta) = \epsilon^k \theta$. To each point P_i , $i=1 \cdots t$, we have then $\eta_i^{l_i} = \epsilon^k$, for suitable η_i , l_i . Such a θ then necessarily has at P_i a zero of the form $r_i N + l_i - 2 \ge 0$ and the divisor of θ must be (θ) $= (P_i^{r_i N + l_i - 1} Q_j^{m_i} h(Q_j)^{m_j} \cdots h^{N-1}(Q_j)^{m_j})$ where the Q_j are nonfixed points of h.

Let us partition the P_i into $P_1 \cdots P_u$, and $P_{u+1} \cdots P_i$, $0 \le u \le t$, where P_i for $i \le u$ has $l_i = 1$ and P_i for i > u has $l_i \ge 2$. If $h(\phi) = \epsilon^k \phi$ also, then $\phi/\theta = f$ is an H invariant function on S which may be construed as a function \hat{f} on \hat{S} . Then, since $f\theta$, for fixed θ and f varying over all H invariant functions with poles at most at the zeros of θ , gives us all differentials $\phi \in A_2$ for which $h(\phi) = \epsilon^k \phi$, we have to compute the dimension of this space of functions on \hat{S} . At a point P_i , $i \le u, \phi/\theta = f$ is

JOSEPH LEWITTES

$$\frac{z^{r'_iN-1}+\cdots}{z^{r_iN-1}+\cdots}=z^{-(r_i-r'_i)N\theta}+\cdots$$

but r'_i is at least 1, so that f has a pole of order at most $(r_i-1)N$. On the other hand, at P_i , i > u, $\phi/\theta = f$ is $z^{-(r_i-r'_i)N}$ where r'_i may be 0, so that f may have a pole of order at most r_iN . Thus, on \hat{S}, \hat{f} must be a multiple of the divisor

$$\omega = (\hat{P}_1^{1-r_1} \cdots \hat{P}_u^{1-r_u} \hat{P}_{u+1}^{-r_u+1} \cdots \hat{P}_t^{-r_t} \hat{Q}_j^{-m_j}).$$

We now have $n_k = \deg(\omega^{-1}) + i(\omega^{-1}) + 1 - g_1$. The degree of the divisor (θ) is

$$4g - 4 = \sum_{i=1}^{t} (r_i N + l_i - 2) + N \sum m_j$$
$$= N \left(\sum_{i=1}^{t} r_i + \sum m_j \right) + \sum_{i=u+1}^{t} (l_i - 2) - u$$

Therefore,

$$\deg(\omega^{-1}) = \sum_{i=1}^{t} r_i - u + \sum m_j = \frac{4g - 4 - \sum_{i=u+1}^{t} (l_i - 2) - (N - 1)u}{N}$$

This is as small as possible when u = t and as large as possible when u=0 and each $l_i=2$. When u=t we have deg $(\omega^{-1}) = (4g-4)/N - ((N-1)/N)t$. Using the Riemann-Hurwitz relation gives, deg $(\omega^{-1}) = 4g_1 - 4 + ((N-1)/N)t > 2g_1 - 2$, so that $i(\omega^{-1}) = 0$ in any event. When u=0 and each $l_i=2$, we have deg $(\omega^{-1}) = (4g-4)/N = 4g_1 - 4 + 2((N-1)/N)t$. This completes the proof of (ii).

YESHIVA UNIVERSITY

322