RESEARCH ANNOUNCEIMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

INVARIANT QUADRATIC DIFFERENTIALS ${ }^{1}$

BY JOSEPH LEWITTES

Communicated by R. Bott, March 21, 1962
Let S be a compact Riemann surface of genus $g \geqq 2$ and h an automorphism (conformal homeomorphism onto itself) of $S . h$ generates a cyclic group $H=\left\{I, h, \cdots, h^{N-1}\right\}$ where N is the order of h. We shall assume that N is a prime number. Let D_{m} for an integer $m \geqq 0$ denote the space of meromorphic differentials on S and $A_{m} \subset D_{m}$ the subspace of finite analytic (without poles) differentials. We obtain representations of H by assigning to h the linear transformation of D_{m} in to itself by $h(\theta)=\theta h^{-1}$ for every $\theta \in D_{m}$. It is clear that h takes A_{m} into itself so that by restricting to A_{m} we have a representation of H by a group of linear transformations of a finite dimensional vector space.

In this note we are concerned with determining some of the properties of (h), the diagonal matrix for h, considering h as a linear transformation on the $3 g-3$ dimensional space A_{2} of quadratic differentials. Since $(h)^{N}=(I)$ it is clear that each diagonal element of (h) is an N th root of unity. If $\epsilon \neq 1$ is an N th root of unity, denote by n_{k} the multiplicity of $\epsilon^{k}(k=0,1, \cdots, N-1)$ in (h).

Let $\hat{S}=S / H$ be the orbit space of S under H. Then it is well known that \hat{S} can be given a conformal structure and the projection map $\pi: S \rightarrow \hat{S}$ is then analytic. The branch points of this covering are precisely at the t fixed points of $h, P_{1}, \cdots, P_{t} \in S, t \geqq 0$-here we make essential use of the assumption that N prime-each a branch point of order $N-1$. Let g_{1} be the genus of \hat{S}. The Riemann-Hurwitz formula reads $2 g-2=N\left(2 g_{1}-2\right)+(N-1) t$. Now clearly n_{0} is the dimension of that subspace of A_{2} which consists of H-invariant differentials, i.e., those satisfying $h(\theta)=\theta$.

Theorem 1. (i) n_{0}, the dimension of the space of H-invariant finite quadratic differentials, is $3 g_{1}-3+t$.
(ii) If $n_{k} \neq 0$ for some $k, 1 \leqq k \leqq N-1$, then

[^0]\[

$$
\begin{equation*}
3 g_{1}-3+2 \frac{(N-1)}{N} t \geqq n_{k} \geqq 3 g_{1}-3+\frac{(N-1)}{N} t \tag{}
\end{equation*}
$$

\]

(iii) There exists $k^{*}, 1 \leqq k^{*} \leqq N-1$, for which $n_{k^{*}} \neq 0$.
(iv) If $g_{1} \geqq 1$ then $n_{0} \leqq 3 g-5$ unless S is a surface with equation $y^{2}=x^{6}+A x^{4}+B x^{2}+1$, in which case $g=2, g_{1}=1, n_{0}=2=3 g-4=3 g_{1}$ $-3+t$.

The proof of (i) is similar to the proof of (ii) given below. (iii) follows immediately from the

Lemma. The representation $h^{m} \rightarrow(h)^{m}, m=0,1, \cdots N-1$, of H is faithful, i.e., $(h)^{m}=(I)$ implies $m=0$ unless $g=2$ and $h=J$, the hyperelliptic involution.

The simple proof of this lemma is in my thesis and is omitted here.
(iv) is an immediate consequence of (iii) and (ii) since (*) then implies $n_{k^{*}} \geqq 2$ unless $g_{1}=1, N=2, t=2$ ($g_{1}=1$ implies $t \geqq 1$ by Rie-mann-Hurwitz) or $g_{1}=1, t=1$. But if $g_{1}=1, t=1$ then by (i) one has $n_{0}=1 \leqq 3 g-5$ for $g \geqq 2$. The first exception is the case indicated in (iv) with $h: x \rightarrow-x, y \rightarrow y$ and fixed points on the two sheets over $x=0$.

To prove (ii) let $\theta \in A_{2}$ be such that $h(\theta)=\epsilon^{k} \theta$. At any fixed point $P \in\left\{P_{1} \cdots P_{t}\right\}$ say $h^{-1}: z \rightarrow \eta z$ in terms of a suitable local parameter, $\eta^{N}=1, \quad \eta \neq 1$. Then we must have $\theta h^{-1}=\left(a_{0}+a_{1}(\eta z)+\cdots\right) \eta^{2} d z^{2}$ $=\epsilon^{k}\left(a_{0}+a_{1} z+\cdots\right) d z^{2}$. Thus $a_{n}=0$ unless $n+2 \equiv l(\bmod N)$ where $\eta^{l}=\epsilon^{k} ; 1 \leqq l \leqq N-1 . \theta$ then actually has an expansion of the form at P in z,

$$
\theta=\left(a_{l-2} z^{l-2}+\cdots+a_{k N+l-2} z^{k N+l-2}+\cdots\right) d z^{2}
$$

(if $l \geqq 2$; if $l=1$ the first term must be omitted). This then holds for every θ for which $h(\theta)=\epsilon^{k} \theta$. To each point $P_{i}, i=1 \cdots t$, we have then $\eta_{i}^{l_{i}}=\epsilon^{k}$, for suitable η_{i}, l_{i}. Such a θ then necessarily has at P_{i} a zero of the form $r_{i} N+l_{i}-2 \geqq 0$ and the divisor of θ must be (θ) $=\left(P_{i}^{r_{i} N+l_{i}-1} Q_{j}^{m_{i}} h\left(Q_{j}\right)^{m_{i}} \cdots h^{N-1}\left(Q_{j}\right)^{m_{j}}\right)$ where the Q_{j} are nonfixed points of h.

Let us partition the P_{i} into $P_{1} \cdots P_{u}$, and $P_{u+1} \cdots P_{t}, 0 \leqq u \leqq t$, where P_{i} for $i \leqq u$ has $l_{i}=1$ and P_{i} for $i>u$ has $l_{i} \geqq 2$. If $h(\phi)=\epsilon^{k} \phi$ also, then $\phi / \theta=f$ is an H invariant function on S which may be construed as a function \hat{f} on \hat{S}. Then, since $f \theta$, for fixed θ and f varying over all H invariant functions with poles at most at the zeros of θ, gives us all differentials $\phi \in A_{2}$ for which $h(\phi)=\epsilon^{k} \phi$, we have to compute the dimension of this space of functions on \hat{S}. At a point P_{i}, $i \leqq u, \phi / \theta=f$ is

$$
\frac{z^{r_{i} N-1}+\cdots}{z^{r_{i} N-1}+\cdots}=z^{-\left(r_{i}-r_{i}^{\prime}\right) N \theta}+\cdots
$$

but r_{i}^{\prime} is at least 1 , so that f has a pole of order at most $\left(r_{i}-1\right) N$. On the other hand, at $P_{i}, i>u, \phi / \theta=f$ is $z^{-\left(r_{i}-r_{i}^{\prime}\right) N}$ where r_{i}^{\prime} may be 0 , so that f may have a pole of order at most $r_{i} N$. Thus, on \hat{S}, \hat{f} must be a multiple of the divisor

$$
\omega=\left(\hat{P}_{1}^{1-r_{1}} \cdots \hat{P}_{u}^{1-r_{u}} \hat{P}_{u+1}^{-r_{u}+1} \cdots \hat{P}_{t}^{-r_{t}} \hat{Q}_{j}^{-m_{j}}\right)
$$

We now have $n_{k}=\operatorname{deg}\left(\omega^{-1}\right)+i\left(\omega^{-1}\right)+1-g_{1}$. The degree of the divisor (θ) is

$$
\begin{aligned}
4 g-4 & =\sum_{i=1}^{t}\left(r_{i} N+l_{i}-2\right)+N \sum m_{j} \\
& =N\left(\sum_{i=1}^{t} r_{i}+\sum m_{j}\right)+\sum_{i=u+1}^{t}\left(l_{i}-2\right)-u
\end{aligned}
$$

Therefore,
$\operatorname{deg}\left(\omega^{-1}\right)=\sum_{i=1}^{t} r_{i}-u+\sum m_{j}=\frac{4 g-4-\sum_{i=u+1}^{t}\left(l_{i}-2\right)-(N-1) u}{N}$.
This is as small as possible when $u=t$ and as large as possible when $u=0$ and each $l_{i}=2$. When $u=t$ we have $\operatorname{deg}\left(\omega^{-1}\right)=(4 g-4) / N$ $-((N-1) / N) t$. Using the Riemann-Hurwitz relation gives, $\operatorname{deg}\left(\omega^{-1}\right)$ $=4 g_{1}-4+((N-1) / N) t>2 g_{1}-2$, so that $i\left(\omega^{-1}\right)=0$ in any event. When $u=0$ and each $l_{i}=2$, we have $\operatorname{deg}\left(\omega^{-1}\right)=(4 g-4) / N=4 g_{1}-4$ $+2((N-1) / N) t$. This completes the proof of (ii).

[^1]
[^0]: ${ }^{1}$ This is a brief edited excerpt from my thesis submitted to Yeshiva University, 1962.

[^1]: Yeshiva University

