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If G is a group, then an infinite product on G is a function p: G00—>H, 
where G00 is the set of sequences of elements of G, and H is some other 
set. I call ix associative if it satisfies all the associative laws of the form 

fi{Xi, X2y ' * y Xny ' ) 

z=z ll\X\X% * * * # i 2 _ i , %i2 * * * %i%— lj j %in ' * * *^tn+i—1) / • 

Here juxtaposition denotes multiplication in G. Then the utter trivial
ity of /x follows from this trick: 

#1#2#3 ' * ' 

= ( X i ^ i ) ( ^ i ^ 2 ^ 2 ^ l ) ( ^ 1 ^ 2 ^ 3 ^ 3 ^ 2 ^ l ) * * • 

= 1-1-1 

Here xn denotes the inverse of xn, and 1 denotes the identity of G. 
A form of this trick was noticed and used by B. M azur [2], An 

example of another use is this. 
Let C be a compact Hausdorff space. If a > 0 , define C(a) to be the 

space CX [0, a) with CXO identified to one point 0. Define 2 to be 
the set of all those functions/: C(l)—>C(1) which can be extended to 
ƒ*: C(2)—»C(1) where/* is a homeomorphism onto an open subset of 
C(l) , such t h a t / ( 0 ) = 0 . Define Y to be the set of those homeomor-
phisms <£: C(l)—>C(1) for which there is e > 0 such that <j> is the 
identity on C ( e ) U [ C ( l ) - C ( l - e ) ] . 

If ƒ and g belong to S, define ƒ ~ g to mean there exists 0 £ T such 
that f =g(j)1 where the notation here for composition of maps is that 
g<l>(x)=(t>(g(x)). I t can be shown that f~g if and only if there is 
€ > 0 such t h a t / | C(e) = g | C(c). 

From this, one can deduce that the equivalence classes of S under 
the relation ~ form a group with multiplication induced by the com
position of maps; this group will be called G. 

Now if / i , ƒ2, • • • , is a sequence of elements of S, define 
M(/I» ƒ2, • • * ) to be the direct limit of the sequence of spaces and maps 

C(l)£c(l)£c(l)->- • • . 
1 This research was supported by the Air Force Office of Scientific Research. 
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One can show that /x(/i, /2, • • • ) is determined up to homeomor-
phism by the equivalence classes of/i, ƒ2, etc. The associativity, up to 
homeomorphism, of ju is simply the statement that the direct limit of 
a directed set of spaces and maps is homeomorphic to the direct limit 
of a cofinal subset. 

The associativity trick then proves that the spaces ju(/i, ƒ2, • • • ) 
are all homeomorphic to each other; a particular such space can be 
shown homeomorphic to C(°°) or C(l). 

I t follows from the compactness of C, that if X is a space which 
is the union of its open subsets Un, each of which is homeomorphic to 
C(oo) in such a way that the odd points 0 coincide for all ny and if 
every compact subset of X is contained in some Un, then X is homeo
morphic to some space of the form M(/I» ƒ2, • * * )• And hence X is 
homeomorphic to C(oo). 

Taking C to be the (» — l)-sphere, one obtains the theorem of M. 
Brown [ l ] that a monotone union of open w-cells is an open w-cell. 

This is perhaps the most conceptual way to understand my proof 
[3] of several generalizations of Brown's theorem, although if writ
ten out in detail this method would be no shorter. 
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