GROUPS WITH INFINITE PRODUCTS

BY JOHN STALLINGS¹

Communicated by Deane Montgomery, April 8, 1962

If G is a group, then an *infinite product* on G is a function $\mu: G^{\infty} \rightarrow H$, where G^{∞} is the set of sequences of elements of G, and H is some other set. I call μ associative if it satisfies all the associative laws of the form

$$\mu(x_1, x_2, \cdots, x_n, \cdots) \\ = \mu(x_1x_2 \cdots x_{i_2-1}, x_{i_2} \cdots x_{i_3-1}, \cdots, x_{i_n} \cdots x_{i_{n+1}-1}, \cdots).$$

Here juxtaposition denotes multiplication in G. Then the utter triviality of μ follows from this trick:

$$\begin{aligned} x_1 x_2 x_3 & \cdots \\ &= (x_1 \bar{x}_1 x_1) (x_2 \bar{x}_2 \bar{x}_1 x_1 x_2) (x_3 \bar{x}_3 \bar{x}_2 \bar{x}_1 x_1 x_2 x_3) & \cdots \\ &= (x_1 \bar{x}_1) (x_1 x_2 \bar{x}_2 \bar{x}_1) (x_1 x_2 x_3 \bar{x}_3 \bar{x}_2 \bar{x}_1) & \cdots \\ &= \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1} \cdot \cdots . \end{aligned}$$

Here \bar{x}_n denotes the inverse of x_n , and 1 denotes the identity of G.

A form of this trick was noticed and used by B. Mazur [2]. An example of another use is this.

Let C be a compact Hausdorff space. If $\alpha > 0$, define $C(\alpha)$ to be the space $C \times [0, \alpha)$ with $C \times 0$ identified to one point 0. Define Σ to be the set of all those functions $f: C(1) \rightarrow C(1)$ which can be extended to $f_*: C(2) \rightarrow C(1)$ where f_* is a homeomorphism onto an open subset of C(1), such that f(0) = 0. Define Γ to be the set of those homeomorphisms $\phi: C(1) \rightarrow C(1)$ for which there is $\epsilon > 0$ such that ϕ is the identity on $C(\epsilon) \cup [C(1) - C(1-\epsilon)]$.

If f and g belong to Σ , define $f \sim g$ to mean there exists $\phi \in \Gamma$ such that $f = g\phi$, where the notation here for composition of maps is that $g\phi(x) = \phi(g(x))$. It can be shown that $f \sim g$ if and only if there is $\epsilon > 0$ such that $f | C(\epsilon) = g | C(\epsilon)$.

From this, one can deduce that the equivalence classes of Σ under the relation \sim form a group with multiplication induced by the composition of maps; this group will be called G.

Now if f_1, f_2, \dots , is a sequence of elements of Σ , define $\mu(f_1, f_2, \dots)$ to be the direct limit of the sequence of spaces and maps

$$C(1) \xrightarrow{f_1} C(1) \xrightarrow{f_2} C(1) \rightarrow \cdots$$

¹ This research was supported by the Air Force Office of Scientific Research.

One can show that $\mu(f_1, f_2, \cdots)$ is determined up to homeomorphism by the equivalence classes of f_1, f_2 , etc. The associativity, up to homeomorphism, of μ is simply the statement that the direct limit of a directed set of spaces and maps is homeomorphic to the direct limit of a cofinal subset.

The associativity trick then proves that the spaces $\mu(f_1, f_2, \cdots)$ are all homeomorphic to each other; a particular such space can be shown homeomorphic to $C(\infty)$ or C(1).

It follows from the compactness of C, that if X is a space which is the union of its open subsets U_n , each of which is homeomorphic to $C(\infty)$ in such a way that the odd points 0 coincide for all n, and if every compact subset of X is contained in some U_n , then X is homeomorphic to some space of the form $\mu(f_1, f_2, \cdots)$. And hence X is homeomorphic to $C(\infty)$.

Taking C to be the (n-1)-sphere, one obtains the theorem of M. Brown [1] that a monotone union of open *n*-cells is an open *n*-cell.

This is perhaps the most conceptual way to understand my proof [3] of several generalizations of Brown's theorem, although if written out in detail this method would be no shorter.

References

1. M. Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814.

2. B. Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59-65.

3. J. Stallings, On a theorem of Brown about the union of open cones, Ann. of Math. (to appear).

PRINCETON UNIVERSITY AND

THE INSTITUTE FOR ADVANCED STUDY