DIFFERENTIABLE OPEN MAPS¹

BY P. T. CHURCH

Communicated by Deane Montgomery, June 4, 1962

Let $f: M^n \to N^n$ be a continuous function, where M^n and N^n are *n*-manifolds (without boundary). It will be implicitly assumed that the manifolds share the differentiability properties of f, e.g., $f \in C'$ implies that M^n and N^n are C' manifolds. The map f is called *open* if, whenever U is open in M^n , f(U) is open in N^n ; it is *light* if, for every $y \in N^n$, dim $(f^{-1}(y)) \leq 0$.

For n=2, it is well-known that a nonconstant complex analytic function is open and light. Conversely, Stoilow proved that every light open map is locally, at each point, topologically equivalent [9, p. 198] to one of the canonical analytic maps g_d , defined by $g_d(z)$ $= z^d (d=1, 2, \cdots)$. If it is not assumed that f is light, however, fmay be quite different from a g_d . R. D. Anderson in [1] (see also [2]) constructed an open map $f: S^2 \rightarrow S^2$ such that, for each $y \in S^2$, $f^{-1}(y)$ is a nondegenerate continuum.

For $n \ge 2$, let $F_{n,d}: E^n \to E^n$ be the canonical open map defined by: $F_{n,d}(x_1, x_2, \dots, x_n) = (u_1, u_2, \dots, u_n)$, where $u_1 + iu_2$ $= (x_1 + ix_2)^d$ $(i = \sqrt{-1})$ and $u_j = x_j$ $(j = 3, 4, \dots, n; d = 1, 2, \dots)$. Since each $F_{n,d}$ is a generalization of g_d , it is natural to wonder (for $n \ge 3$) how much an arbitrary open map f, satisfying some additional condition, differs locally from one of them.

The branch set B_f is the set of points in M^n at which f fails to be a local homeomorphism (defined in [3]).

THEOREM. Let $f: M^n \to N^n$ be C^n and open $(n \ge 2)$, where M^n is compact or f is light. Then there exists a closed set E, dim $E \le n-3$, such that, for each x in $M^n - E$, there exists a neighborhood of x on which f is topologically equivalent to one of the canonical maps $F_{n,d}$ $(d=1, 2, \cdots)$. Moreover, E is nowhere dense in B_f unless f is a local homeomorphism.

In particular, for n=2 we have the classical structure. In [4, p. 620, (4.3)] there is a 2-to-1 open map $f: S^5 \rightarrow S^5$ for which B_f is not locally a manifold at any point (it is necessarily [4, p. 620, (4.2)] a 3-gm mod 2); thus some differentiability assumption is required above. There is a C^{∞} open map $f: E^2 \rightarrow E^2$ for which B_f is the y-axis; thus either compactness of the domain or lightness of the map is needed. An example $f: E^3 \rightarrow E^3$ (or $f: S^3 \rightarrow S^3$) given by E. Hemmingsen

¹ Research supported in part by National Science Foundation grant 18049.

and the author in [4, p. 620, (3.3)] indicates the extent of possible pathology. There B_f has a Cantor set of point components, so that the exceptional set E in the Theorem is necessary (f can be shown to be topologically equivalent to a C^{∞} map).

The following corollary is a generalization of the inverse function theorem. Let Z be the set of zeros of the Jacobian determinant.

COROLLARY. If $f: E^n \to E^n$, $n \ge 3$, $f \in C^n$, and dim $Z \le 0$, then f is a local homeomorphism.

PROOF. The map f is light, and its Jacobian determinant is either non-negative or nonpositive everywhere. Thus f is open [8], and the result follows from the Theorem. More generally, the conclusion holds if dim $(B_f) \leq 0$.

A basic lemma for the proof of the Theorem follows. The set of points in M^n at which the Jacobian matrix has rank at most q is denoted by R_q .

LEMMA. Let $h: M^n \rightarrow N^p$, where $h \in C^n$ and M^n and N^p are *n*- and *p*-manifolds, respectively. Then dim $(f(R_q)) \leq q$.

In particular, dim $(h(M^n)) \leq n$. The lemma is related to the theorem of A. P. Morse [6] on the image of the critical set of a realvalued function, and to Sard's Theorem [7]. If f is light, then [5, pp. 91-92] dim $(R_q) \leq q$.

The proof of the Theorem employs Morse's Theorem, a uniform form of the implicit function theorem, and some results from [3]. Detailed proofs will appear elsewhere.

References

1. R. D. Anderson, On monotone interior mappings in the plane, Trans. Amer. Math. Soc. 73 (1952), 211-222.

2. ——, Open mappings of compact continua, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 347-349.

3. P. T. Church and E. Hemmingsen, Light open maps on n-manifolds, Duke Math. J. 27 (1960), 527-536.

4. -----, Light open maps on n-manifolds. II, Duke Math. J. 28 (1961), 607-624.

5. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton Mathematical Series, Vol. 4, Princeton Univ. Press, Princeton, N. J., 1941.

6. A. P. Morse, The behavior of a function on its critical set of points, Ann. of Math. 40 (1939), 62-70.

7. A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890.

8. C. J. Titus and G. S. Young, A Jacobian condition for interiority, Michigan Math. J. 1 (1952), 89-94.

9. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. Vol. 28, Amer. Math. Soc., New York, 1942.

Syracuse University