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1. Let x(t) with — oo < / < + °° be the variables of a real, separable, 
normal and stationary stochastic process, such that £[#($)] = () and 
E[x2(f)] = 1. Let the covariance function of the process be 

ƒI 00 

cos \tf(\)d\, 
0 

and assume that the spectral density ƒ (X) is of bounded variation in 
( — oo, oo ) and satisfies the condition 

ƒi 00 

X2(log(l + \))°f(\)d\ < oo 
0 

for some a > l . 
Then it is known (Hunt [5], Belayev [l]) that the sample func

tions x(t) will almost certainly be everywhere continuous and have 
continuous first derivatives x'(t). Consequently for every fixed t>0 
the maximum 

max %(u) 

will be a random variable defined but for equivalence. 
For the sake of typographical convenience, we write in the sequel 

simply maxx(w), omitting the subscript 0Su^*t, and similarly in 
respect of min x(u). 

The object of this note is to prove the relation 

(1) lim P \ I max x(u) - (2 log 01/21 < ° g ° g 1 = 1. 
r-oo L' ' (log/)1/2J 

The notation P[ • • • ] denotes here, as throughout the sequel, the 
probability of the relation between the brackets. 

A similar relation was recently given for the case of a normal sta
tionary sequence xn with » = 0, ± 1 , • • • by Berman [2]. 

2. We shall first prove that 

1 Research work done (Tech. Report No. 1) partially under Contract NASw-334, 
National Aeronautics and Space Administration. 

512 



A NORMAL STATIONARY STOCHASTIC PROCESS 513 

(2) P [max x(u) g (2 log /)1 / 2 - ° g ° g H -> 0 
L * (log/)1'2 J 

as £—* oo. 
Let c>0 be given, and define a random variable y(u) by writing 

for any real u 

(1 if x(u) > c, 

\0 if *(») ^ c. 

Then y(w) will define a stationary process such that 

ƒ 00 

4>(x)dx, 

E[y(u)y(v)] = P[x(u) > cy x(v) > c] 

ƒ 00 /» 00 

J *(*, y; r)dxdy, 

where 
1 / x2\ 

1 / x2 — 2rxy + y2\ 
<£(#, y;r) = expl ), 

" 2TT(1 - r2)1 '2 F \ 2(1 - r2) / 

r = r(w — v). 

I t follows (cf. e.g. Loève [6, pp. 472, 520]) that the integral 

/
y{% 

o 
z(l) = I y(u)du 

J o 

is defined both in quadratic mean and as a sample function integral, 
and that the two integrals coincide, but for equivalence. Then z(t) 
will, with probability 1, be equal to the Lebesgue measure of the set 
of points u in [0, t] such that x(u) >c. Thus z(t) èO with probability 1, 
and 

(3) P[z(t) = 0] = P[m2ixx(u) ^ c]. 

For all sufficiently large c we have (Loève, I.e.) 

J
00 t / c2\ 

4>(x)dx> — e x p f - y j , 
and further 



514 HARALD CRAMÉR [September 

ƒ» t /• t / » 00 /» 00 

I dudv I I 4>(x, y; r)dxdy 
0 J O J c J o 

with r = r(w —v). 
For any fixed r in ( — 1, 1) we have the identity 

ƒ 00 /» 00 

I <£(#, ;y; r)dxdy 

c * W * y + 2 W 0
 e X P \ l + w/ ( l - w*)W ' 

(For r = 0 the identity is obvious, and some calculation will show that 
the derivatives of both sides with respect to r are equal.) 

It then follows that the variance of 0(0 is 

I f f ' fr(u-v) / c2 v OW 
Var[z(0] - s Jo Jodudv Jo expv~ r ^ J ö ^ ^ ï 

(5) 
< — I I I r(u - v) | expf - * -j)dudv. 

From our assumptions concerning the spectral density ƒ(X), it fol
lows that there exist positive constants k and m such that 

I r(0 I < TT f o r a11 *' 

| KO | â 1 -m 2 / 2 for | t | â 2*. 

(The latter inequality is easily proved by means of Cramer [4, 
Lemma l].) 

Dividing the domain of integration in (5) into two parts, defined 
respectively by \u — v\ >2k and |w—1;| ^2fe, and using in each part 
the appropriate inequality for | r(u — v) |, we obtain from (5) by some 
straightforward estimation 

(6) 
r . / 2C 2 \ 27T1'2 t / C2\ 

Va.r[z(i)\ < 2kt log t expI ) -| exp( ). 
\ 3 / m c \ 2 / 

Now the Tchebychev inequality gives 

. V a r [z{t)\ 
P[z(t) = 0] ^ ±-^+ 

Taking 
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log log t 
c= ( 2 1 o g 0 1 / 2 - > 

(log01 / 2 

we then obtain from (3), (4) and (6) 

P[max*(i0 S c] < A((logt)H-1'*+ (log t)1^2'12) 

where A is independent of t. Since the second member obviously tends 
to zero as t—> <*>, (2) is proved. 

3. I t now remains to prove that 

(7) P ["max x(u) ^ (2 log t)1'2 + ° g ° g H -> 0 
L * (log01/2J 

as /—> oo. For any c > 0 we evidently have 

P[max x(u) ^ c ] = P[min x(u) ^ c ^ max #(w)] + P[min x(u) > c] 

= Pi + P2 . 

P i is, for any continuous sample function x(u), the probability of a t 
least one "crossing" with the level c within [0, / ] , i.e., the probability 
that there is a t least one point u in [0, /] such that x(u) =c . Let N 
denote the total number of such points, and write pn = P[N=n\ for 
w = 0, 1, • • • . Then 

(8) P i = px + p2 + • • • S Pi + 2p2 + • • • = E[N]. 

However, it is known (Bulinskaya [3]) that under the present condi
tions 

r i M 1 7 2 / C2\ 

(9) E[N] = K-^—texp{-jy 

where X2 denotes the second moment of/(X). Further 

P 2 = P[min x(u) > c] ^ P[x(0) > c] 

Taking now 

log log t 

<- ( 2 1 ° s , ) , " + 5 ^ ' 
it follows from (8), (9) and (10) that P i and P 2 both tend to zero as 
/—> 00, so that (7) is proved. Finally, the result (1) follows from (2) 
and (7). 
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1. Introduction. The problem of determining the maximum of the 
function 

(1.1) F(xh x2y • • • , xN) = X &(*<) 

over the domain DN denned by / ^ x 0, is one with various 
ramifications and applications. Analytic solutions and computational 
algorithms have been obtained in a number of ways; see Karush [7], 
Bellman [2], Bellman and Karush [3], Let us now discuss a new way 
of generating solutions of (1.1). Let g(x, a) be a scalar function of the 
scalar variable x and the M-dimensional vector a with the group 
property that 

(1.2) max [g(xh a) + g(x2, b)] = g(x, h(a, b)) (xh x2 à 0), 

where h(a, b) is a known function of a and b. I t follows inductively 
that 

(1.3) maxT J2 «(**, a ^ ) ! = g(*> K*{1\ <*(2), • • • , *<*>)), 
DN L fc-i J 

where DN is as above, and A(a(1), a ( 2 \ • • • , am) is obtained from 


