ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF HYPERBOLIC INEQUALITIES ${ }^{1}$

BY M. H. PROTTER

Communicated by Lipman Bers, April 27, 1962
We consider the asymptotic behavior of solutions of inequalities of the form

$$
\begin{equation*}
|L u|^{2} \leqq c_{1}|u|^{2}+c_{2} \sum_{i=1}^{n}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}+c_{3}\left|\frac{\partial u}{\partial t}\right|^{2} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
L=A-\frac{\partial^{2}}{\partial t^{2}}+b \tag{1.2}
\end{equation*}
$$

and A is a second order elliptic operator. The asymptotic behavior of solutions of parabolic inequalities and related problems have been considered by Agmon and Nirenberg [1], Cohen and Lees [2], Lax [3], and the author [4].

Let D be a bounded domain in E^{n} and suppose $u\left(x_{1}, \cdots, x_{n}, t\right)$ $=u(x, t)$ is a solution of (1.1) in the cylindrical region $R=D \times I$ where I is the half-infinite interval $0 \leqq t<\infty$. We shall study the behavior as $t \rightarrow \infty$ in R of those solutions u which satisfy the additional condition

$$
\begin{equation*}
u=0 \quad \text { on } \quad \Gamma \times I \tag{1.3}
\end{equation*}
$$

where Γ is the boundary of D.
We introduce the notation

$$
\begin{aligned}
(u, v) & =\int_{R} u(x, t) v(x, t) d x d t \\
\|u\| & =(u, u)^{1 / 2} \\
\|u\|_{1}^{2} & =\int_{R} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x d t \\
\|u\|_{D, 1}^{2} & =\int_{D} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x .
\end{aligned}
$$

[^0]The elliptic operator A has the form

$$
A=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right), \quad a_{i j}=a_{j i}
$$

where the $a_{i j}=a_{i j}(x, t)$ are C^{1} functions of x and t.
A function $v(x, t)$ defined in R is said to satisfy Conditions B if

$$
\begin{array}{rll}
v=0 \quad \text { on } & \Gamma \times I \\
\lim _{t \rightarrow \infty} t^{\alpha}\|v\|_{D, 1}=0 & \text { for every } \alpha>0 \tag{1.4}
\end{array}
$$

The operator L is said to satisfy Conditions C if

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(a_{i j}\right)=O\left(\frac{1}{t}\right) \quad \text { for } i, j=1,2, \cdots, n \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial b}{\partial t} \leqq 0 \quad \text { for all sufficiently large } t \tag{1.6a}
\end{equation*}
$$

If (1.5) holds and (1.6a) is replaced by

$$
\begin{equation*}
\frac{\partial b}{\partial t}=O\left(t^{-3}\right) \tag{1.6b}
\end{equation*}
$$

We say that Conditions C^{\prime} are satisfied.
Lemma 1. If $v(x, t)$ satisfies Conditions B and the operator L satisfies Conditions C or C^{\prime} then for all sufficiently large α we have

$$
\alpha^{4}\left\|t_{v-2}^{\alpha-2}\right\|^{2}+\alpha^{2}\left\|t^{\alpha-1} v\right\|_{1}^{2} \leqq m_{0}\left\|t^{\alpha} L v\right\|^{2}
$$

where m_{0} is a positive constant depending only on L.
Lemma 2. Under the hypotheses of Lemma 1 we have

$$
\alpha^{1 / 2}\left\|t^{\alpha-1} v_{t}\right\| \leqq m_{1}\left\|t^{\alpha} L v\right\|
$$

for all sufficiently large $\alpha ; m_{1}$ is a positive constant depending only on L.
Theorem 1. Let $u(x, t)$ satisfy in R the differential inequality (1.1) and suppose Conditions B and Conditions C or C^{\prime} hold. If in addition

$$
\begin{equation*}
c_{1}(t)=O\left(t^{-2}\right), \quad c_{2}(t), c_{3}(t)=O\left(t^{-1}\right) \tag{1.7}
\end{equation*}
$$

then $u \equiv 0$ in R.
Theorem 1 follows from Lemmas 1 and 2 by standard arguments.
If we assume that the solution of (1.1) decays more rapidly than stated in Conditions B then the hypotheses on the coefficients of L
and on $c_{i}(t), i=1,2,3$ may be relaxed considerably.
A function $v(x, t)$ defined in R is said to satisfy Conditions E if

$$
\begin{array}{rll}
v=0 & \text { on } & \Gamma \times I \\
\lim _{t \rightarrow \infty} e^{\lambda t}\left\|_{v}\right\|_{D, 1}=0 & \text { for every } \lambda>0 \tag{1.8}
\end{array}
$$

Lemma 3. Suppose v satisfies Conditions E and vanishes for $0 \leqq t \leqq \epsilon$ for some $\epsilon>0$. If the coefficients of L have bounded first derivatives then for all sufficiently large $\lambda>0$ we have

$$
\lambda^{4}\left\|e^{\lambda t} v\right\|^{2}+\lambda^{2}\left\|e^{\lambda t} v\right\|_{1}^{2} \leqq m_{2}\left\|e^{\lambda t} L v\right\|^{2}
$$

where m_{2} is a positive constant depending only on L.
Lemma 4. Under the hypotheses of Lemma 3 we have

$$
\lambda^{1 / 2}\left\|e^{\lambda t} v_{t}\right\| \leqq m_{3}\left\|e^{\lambda t} L v\right\|
$$

where m_{3} is a positive constant depending only on L.
Theorem 2. Let $u(x, t)$ satisfy in R the differential inequality (1.1) and suppose Conditions E hold. If the coefficients of L have bounded first derivatives and if $c_{i}(t), i=1,2,3$, are bounded then $u \equiv 0$ in R.

Bibliography

1. S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, New York University Report IMM-NYU 287 (1961).
2. P. J. Cohen and M. Lees, Asymptotic decay of solutions of differential inequalities, Pacific J. Math. 11 (1961), 1235-1249.
3. P. D. Lax, A stability theorem for solutions of abstract differential equations, Comm. Pure Appl. Math. 9 (1956), 747-766.
4. M. H. Protter, Properties of solutions of parabolic equations and inequalities, Canad. J. Math. 13 (1961), 331-345.

University of California, Berkeley

[^0]: ${ }^{1}$ This investigation was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-253.

