
A LINEAR INITIAL-VALUE PROBLEM 

J. S. MAC NERNEY 

The problem before us today is connected with the role of the 
Stieltjes integral concept as related to linear differential systems. For 
example, suppose that P is a numerical function defined on the real 
line and Lebesgue integrable on each interval, and each of c and Y 
is a real number. I t is commonplace that the function F, absolutely 
continuous on each interval, described by the differential requirement 

(1) F(c) = Y and Ff = F-P almost everywhere, 

is equivalently described by integrating both sides of the differential 
equation from the initial point c (the integration being in the sense of 
Lebesgue) ; another description, however, is provided by the ordinary 
Stieltjes integral requirement 

(2) F(z) = Y + I F-d<j> for each real number z, 

where <f> is any function, absolutely continuous on each interval, hav
ing P as its almost everywhere derivative. Similar translation is 
feasible, of course, with finite systems of first order equations: Y and 
the functions F and P and <j> are taken to be matrix valued, and juxta
position is then interpreted as matrix multiplication. 

In connection with such systems of first order linear equations, 
there are "interface problems" wherein prescribed discontinuities are 
imposed on the otherwise locally absolutely continuous function F in 
equation (1) (the 1955 work of F. W. Stallard [14] and of T. J. 
Pignani and W. M. Whyburn [ i l ] is basic in that area). Some types 
of interface singularities can also be introduced in these systems via 
the function <j> in equation (2); recently Stallard [lS] has succeeded 
in translating some of these modified versions of (2) back into the 
differential equation setting. I regret that his important work does 
not fall within the scope of my subsequent remarks here today. 

I wish to focus attention on possible modifications of the integral 
in system (2) which may arise when the continuity condition on <f> is 
dropped (a bounded variation condition being retained), and on 
related modifications in the "adjoint system," which, in the continu
ous case, inherits the form, 
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(3) G(x) = Y + I d<t> - G f or each real number x9 

from the classical differential equation counterpart. We shall see that 
there is an axiomatic description of these conjoined systems; that 
there may be different modifications of the integral in (2) and that in 
(3), consistent with the existence of a function W which is defined on 
the plane and provides unique solutions in the form 

(4) F(z) = Y-W(c9 z) and G{x) = W(x, <;)• F; 

and that there is a somewhat larger problem suggested by this analy
sis. 

Some of the results which I shall present here today are new, and 
new theorems will be designated by Arabic numerals. Theorems which 
are paraphrases of those already in the literature are to be designated 
by letters from the Roman alphabet, and the principal references for 
these are: the 1954 paper by H. S. Wall [17] in Archivder Mathematik 
(also, see [16]), the 1955 paper of mine [4] in Annals of Mathematics, 
and a current paper of mine [8] in the Illinois Journal of Mathe
matics. I call attention, also, to the closely related 1959 paper by 
T. H. Hildebrandt [2] in the latter journal, and to the 1955 paper of 
mine [5] in the Journal of the Elisha Mitchell Scientific Society. 

1. A prototype of our investigation here is contained in H. S. 
Wall's theory of harmonic matrices. Let I denote the identity func
tion on the real line 5, n be a positive integer, and the numerals 0 
and 1 denote, respectively, the zero and identity matrices of order n. 
Let <&n denote the class of all n-by-n matrices $ of complex functions 
defined on 5, continuous and of bounded variation on each interval, 
such that 0(0) =0. Let Hn denote the class of all n-by-n matrices W 
such that each Wpq is a continuous complex function defined on 5 X 5 
with, for each number y, Wpq(I, y) of bounded variation on each inter
val, and such that if each of x, y, and z is a real number then 

(5) W(xt y) • W(y, z) - W(x, z) and W(x, x) = 1; 

this is the class of n-by-n harmonic matrices, and the basic theorem 
concerns a one-to-one correspondence between 3>n and Hn. 

THEOREM A. [17, Theorem 1 and Corollary 1.3.] There is a reversible 
function So from 4>n onto Hn which is established by the condition that 

(6) W(x, *) = ! + ƒ 'd4>-W(I, z) 
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for all {x, z} in SXS; moreover, for each c in S and each n-by-n complex 
matrix F, if W=So(<£) then the formulas (4) describe the only n-by-n 
matrices F and G of continuous complex functions defined on S and 
satisfying (2) and (3), respectively. 

In this theorem, the W is obtained from the <f> by successive sub
stitutions in (6) [17, p. 161] generating a convergent Peano-series 
expansion (also, see [8, §6]) from which one can see the exponential 
nature of W in case the matrix values of $ permute multiplicatively. 
There is another theorem, however, which provides explicit formulas 
for the function SQ. Here, and hereafter, d4>(x, z) means 4>(z)—<j)(x). 

THEOREM B. If W=8o(0) then, for each {x, z} in SXS, 
(i) [17, Corollary 1.1 ] ifcisanumber,d<t>(x,z)=f*W(I,c) -dW{c,I). 
(ii) [4, Theorem 3.5] W(x, z) = s j p [ l + ^ L the limit {with decreas

ing norm of subdivisions) of continued matrix products of the form, 

[1 + d<t>(s0, *i)][l + d<t>{su s2)] • • • [1 + d4>(sn-i, sn)], 

for monotone sequences {SP}Q with SQ = X and s„ = z. 
Now, let us consider introducing a norm on our algebra of n-by-n 

complex matrices, such as (for example) 

(7) | Y\ = max £ | YM\ ; 

various relationships would hold, as here indicated: 

f | Y\ > 0 if F ^ O , | 0 | = 0, | l | = 1, 

(8) | X + F | g | X | + | F | and \XY\ g \ X\ \ Y\ , 

[ and | cX\ == \ c\ \ X\ for each number c, 

and the notions of continuity, convergence, and bounded variation 
could be equivalently discussed in terms of this norm. I prefer, and 
intend, to assume merely that we have a real normed algebra N, with 
additive and multiplicative identity elements denoted by 0 and 1, 
tha t the relationships (8) hold for our norm on N, and tha t iVis 
complete with respect to this norm (so that we have what is some
times called a real Banach algebra). 

We do not insist on the finite dimensionality of our matrix algebra, 
and it is patently true that Theorems A and B have natural extensions 
to this setting [17, Theorem 4; 4, Theorems 3.1, 3.2, 3.5]. 

2. Considering, for a moment, the problem of modifying the Stieltjes 
integral as indicated earlier, let us agree that all integrals henceforth 
will be determined as limits in the sense of successive refinements of 
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subdivisions (styled the sigma-limit by Hildebrandt [2] and others), 
instead of requiring limits with decreasing norm of subdivisions. For 
functions F and <j> from the real line 5 to the complete normed algebra 
iV, of bounded variation on each interval, the possibilities include 
(and the existence is easily checked in each case) the Cauchy left 
and right integrals [8, §4] and the interior integral considered by S. 
Pollard ("restricted" integral, [12, p. 123]): 

(9) 
/

• Z /• g 

F-d<t>~ F(x)d<j>(xy z), (R) I F-d<j>~ F(z)d<j>(x} z), 

(I) I F-d<i> ~ F(s)d<l>(x, z) (x < s < z or x > s > z), 

with each ƒ£ = (). Here, I have indicated, in each case, the one-term 
approximating sum, considering it inappropriate to belabor you with 
the formal definitions which can be readily inferred. Each integral 
generates a function F on SXS with the property that if x^y^z 
then V(x, y) + V(y9 z) = V(x, z), but only in the third case does V 
share with d<j> the property that V(x, y) = — V(y, x). 

I say that functions V and W (from SX S to any algebraic ring) 
are order-additive and order-multiplicative^ respectively, [8, §l] pro
vided that if either x^y^z or x^y^z then 

(10) V(x, y) + V(yy z) = V(x, z) and W(x, y)W(y, z) - W(x, z). 

Let 0(5t+ denote the class of all order-additive functions from SXS 
to the set of nonnegative real numbers, and 03ÏZ+ denote the class of all 
order-multiplicative functions from SXS to the set of real numbers 
not less than 1. 

There is an obvious one-to-one correspondence between 0(£+ and 
09TC+, as determined by the exponential function: for a in 0Ct+, 

(11) n(x, z) = Exp{«(#, z)) for all {x, z} in S X S; 

this, however, seems not to be the "right" one for our purposes. 

THEOREM C. [8, Theorem 2.2.] There is a reversible function 8 + 

from 0d+ onto 09Tl+ to which {a, /*} belongs only in case one of the 
following holds: 

(i) /x is in 02fll+ and a is defined on SXS by 

n 

a(x, z) = g.l.b. X) [M(V-I> Sp) - !] 
l 

for all monotone sequences {sp}% with SQ*=X and sn~z\ 
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(ii) a is in OCt+ and ix is defined on SXS by 

n 

tx(x, z) = l.u.b. I I [1 + *(*p-i> SP)] 
l 

for all monotone sequences {sp}% with So = x and sn = z. 

This is our first analogue of Theorem B for a case in which dis
continuities are allowed. Since the indicated sums and products are, 
respectively, nonincreasing and nondecreasing with successive refine
ments of subdivisions, I rewrite the formulas from Theorem C as 

(12) a(x, z) = *]>> [/x - 1] and ju(#, «) = *H> [l + a], 

the continuously continued sum and the continuously continued product 
being limits, in the sense of successive refinements of subdivisions, of 
the indicated continued sums and products. From this you will infer, 
immediately and correctly, the meanings of 

(13) *2> [W - 1] and »II* [1 + V] 
for functions V and W from 5 X 5 to our algebra N (also, see [8, §1 ]). 
In the product, of course, the multiplication should be "from left to 
right" as in (ii) of Theorem B. 

3. For our next analogue of Theorem B, I must mention two spe
cial classes of order-additive functions and of order-multiplicative 
functions, respectively, from 5 X 5 to N. Let 00, denote the class of 
all order-additive functions V from 5 X 5 to N such that there is a 
member a of OCt+ with the property that | V\ ^ a , that is, 

| V(x, z) | g a(x, z) for all {x, z} in 5 X 5. 

Let OSfTC denote the class of all order-multiplicative functions W from 
5 X 5 to N such that there is a member /* of 03Tt+ with the property 
that | W—l\ ^ /x-1» that is, 

| W(x, z) - 11 S ix{x, z) - 1 for all {x, z\ in 5 X 5. 

One should notice that, for each x in 5, if W is in 03ÏÏ then W(x, x) = l 
in iV, since if /x is in 0$TI+ then fx(x, #)2 = jLt(#, # ) ^ l . Our second 
analogue of Theorem B is this: 

THEOREM D. [8, Theorem 3.3.] There is a reversible function 8 from 
Od onto Ö3TC such that each of the following is a necessary and sufficient 
condition for the member { V, W} of 0&XÖ3TC to belong to 8: 

(i) V(x, z)=xJï,*[W-l]for each {x, z) in SXS. 
(ii) W(x, z)~xJl* [l + V]for each {x, z) in SXS. 
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(iii) There is an ordered pair {a, fi} in 8+ such that, for {x, z} in 
5X5, 

I W(x, z) - 1 - V(x, z) J £ p(x, z) - 1 - a(x, z). 

The existence of the continuously continued sum and product 
which appear in Theorem D may be deduced from the completeness 
of our normed algebra N, by establishing inequalities of the form 

| S [ T F - 1 ] - E [ ^ - 1 ] | ^ E [ M - 1 ] - Z [ M - 1 ] and 
(14) 

n H + v] - n [1 + v] smi+«]-ii[i+«], 
where s is an ordered subdivision of {#, z} and t is a refinement of s, 
]T), denotes an approximating sum over s, etc. The inequalities (14) 
are based on the observation that 

(15) n [ 1 + B , ] - ( 1 + è 2 ^ | ^ n [1+bP] - ( 1 + i x ) 

provided that |Bp \ ^bp (p = l, • • • , n) [8, proof of Theorem 3.1], 
an inequality which seems to have escaped the attention of earlier 
workers in the field of multiplicative integration (for instance, see 
the 1947 paper by P. R. Masani [9] in the Transactions of the 
Society). 

To see the sense in which this last theorem actually includes Theo
rem B, let us note that for the function <j> from 5 to N to be of bounded 
variation on each interval it is necessary and sufficient that d<j> should 
belong to the class 0&; indeed, for such a 0, we can define the domi
nating a in 0Ct+ to have for its value, at each {xtz} in SXS> the total 
variation of <f> from x to 2. My use of the nonnegative dominating 
functions from Q&+ and 031Z+, in the context of Theorem D, is closely 
related to J. W. Neuberger's use of variation functions and closing 
functions in his 1958 paper [lO], in the Pacific Journal of Mathe
matics, dealing with nonlinear versions of the problems we are con
sidering here today. 

4. Now, we come to our first (possibly "discontinuous") analogue 
of H. S. WalFs Theorem A. Let 0<B denote the class of all functions F 
from 5 to N such that dF belongs to the class 0Ct: as I have just 
noted, this is precisely the class of functions from 5 to N which are 
of bounded variation on each interval, corresponding in a natural 
way to the fully additive members of 0Ct. The integrals we use for 
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modified versions of our original equations (2) and (3) are the left 
and right integrals, respectively, with "approximate definition" 

(16) (L) f F>V~F(x)V(x,z) and (R) f V-G~V(x,z)G(z) 

(in the sense previously explained) ; these are readily shown to exist 
for V in Ö&, F and G in 0(£, and {x, z} in SXS [8, Lemmas 4.1 and 
4.3]. The theorem we now have is this: 

THEOREM E [8, Theorems 4.1 and 4.2.] If Vis in 6d and PF=S(F) 
then, for each c in S and Y in N, both the following hold: 

(i) The only member F of 0(B such that F(z)=Y+(L)fz
cF-V, for 

each z in 5, is the F defined by F(z) = F- W(c, z). 
(ii) The only member G of 0(B such that G(x) = Y-\-{R)JlV-G, for 

each x in S, is the G defined by G(x) = W(x, c) • F. 

These Theorems C, D, and E have been established in the some
what broader setting in which the real line S is replaced by any 
linearly ordered set [8], a result which may be of some interest to those 
concerned with the computational aspects of this analysis. An exam
ple, of the use to which we can put the richer topological structure 
of the real line, is afforded by the following observation. If /3 is a 
member of 0Ct+ and {x,z} is in SXS with x<z then, for each positive 
number bf there is an increasing sequence {tp}l with t0 = x and tn = z 
such that 

(17) /?(/p-i+, tp~) <b for p = 1, • - , n, 

the left member of this inequality being the /3-measure of the open 
segment (^_i, tv). This inequality follows from the fact that a non-
decreasing real function on a number-interval is the uniform limit 
of a sequence of simple step functions (a fact which, incidentally, 
characterizes the completeness of the real line). 

By using this observation, the existence and uniqueness results of 
T. H. Hildebrandt [2], to which earlier allusion was made, can be 
reduced to the left-right integral context of Theorem E [8, §10]. The 
Stieltjes integral modification so effectively used by Hildebrandt is a 
version of the Lebesgue-Stieltjes integral studied by W. H. Young 
[18]: for F in 0® and V in 0 $ , an "approximate definition" in the 
present setting is 

(F(x)V(x, x+)+F(y)V(x+, z-)+F(z)V(z-,z) or 

\F(X)V(X, x-)+F(y)V(x-, z+)+F(z)V(z+7 z), 

according as x<y<z or x>y>z, and the obvious analogue for 
{Y)jlV-G, with (Y)fx = 0. 

(1S)(Y)J'F-V^^ 
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What I intend, now, is to give an axiomatic description of some of 
the systems for which this same reduction process (to the context of 
Theorem E) can be carried out. 

5. The axiomatic description is fourfold, the first part being the 
Linearity Axiom: 

AXIOM I. Each of K\ and K2 is an additive function from 0(B into 
QCl andj for each U in 0(B and each {X, Z) in NXN, 

Ki[XU] = XKi[U] and K2[UZ] = K2[U]Z. 

Clearly, 0Ct and 0(B are additive families of functions and this 
axiom is satisfied by all appropriate pairs of integrals already men
tioned, as is also the Boundedness Axiom: 

AXIOM II . There is a member X of Qd+ with the property that, if U 
is in 0(B and {#, z} is in SXS and m is a number such that | U(y)\ 
^mfor all y in S such that x^y^z or x^y^z, then 

I Ki[U](x, z) j g m\(x} z) and \ K2[ll](x} z) \ g m\(x} z). 

Looking ahead, I suggest that we are to consider the possible exist
ence, for each c in 5, of functions F and G belonging to the class 0(B 
such that 

(19) F(z) = F(c) + Ki[F](c, z) and G(x) = G(c) + K2[G](x, C) 

for all x and z in 5, and of a function W belonging to the class 09TC 
and providing the F and G for (19) in the now familiar form 

(20) F(z) = F(c)W(c, z) and G(x) = W(x, c)G(c). 

In investigating the nature of K\ and K2i the following notational 
device is useful: in any appropriate context, the numeral 1 also de
notes the constant function from S to N having only the value 1, 
lx (for x in S) denotes the function from S to N having the value 1 
at x and the value 0 elsewhere, and 0X denotes the function 1 — lx 

having the value 0 at x and the value 1 elsewhere on S. 
Now, a moment's reflection shows that, for example, if x<z then 

(21) Ki[U](x,z) = K1[lm](x,x+) and Ki[L](x,z) = £ i [ l j ( * - , * ) , 

with similar relations for x>z and for K2 in place of K\. Also, if U 
is in 0(B and /? is a member of 0Ct+ such that \dU\ ^/3 then, for each 
triple {x, y, z\ of numbers with y between x and 0, the difference 

TOtfxIlJfa z) + U(y)K1[0x-U](x, z) + U(z)K1[U](x, *)-2^[£/](*, z) 

has norm not exceeding j3(x + , z — )X(x, z) or j3(# — , z+)\(x, z), ac
cording as x<z or x>z. These considerations lead directly to a 
representation for K% and K2. 
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(23) 

THEOREM 1. With V-Ki[l] and 7 = j£2[l], there exists a member 
{A, B) of e a x o a and a member {J , S} of ©aXOCfc such that if U 
is in ÖCB and {x, z) is in SXS then these formulas hold: 

Ki[U](x,z) 

= (L) (*U-A + (/) ƒ V ( - A + V - B) + (R) ƒ 'u-B and 

K2[U](x, z) 

= (L)f°A'U+(I)f\-A+T-B)-U + (R)f'%-U. 

In indication of proof, beyond the remarks preceding Theorem 1, 
I shall let it suffice to give a formula for one such ordered pair {-4,5} 
as is mentioned in the theorem. For each x in 5 let each of A(x, x) 
and B(x, x) be zero and, for each z in S different from x, let 

i l ( * , * ) - E * i [ l j (y , ?+) or D tfi[l,](y,y-), 

*(*,«)= E *i[iJ(y-,y) or E ^i[iJ(y+,y) 
z<y£» x>y^t 

according a s # < s or x>2; the nature of the convergence is apparent 
from the observation that the sum of the norms of these elements of 
N over any finite set of the y's is bounded by X(x, z). 

I wish to make one more observation about the nature of Theorem 
1 : there is the obvious converse theorem to the effect that, for any A, 
J , B, "By Vy and V in the class ÖCfc, the formulas (23) define functions 
K\ and K% which satisfy Axioms I and II. 

6. As a preamble to the next axiom, I now offer a short computa
tional procedure, coupled with some heuristic remarks. Supposing 
that c is in S and F is a member of 0(B such that 

(25) F(z) - F(c) + K![F](c, z) for each z in S, 

we find that, for c^x<z, 

F(x+) - F(x) - F(x)K1[lx](x)x+) + F(x+)Kl[Ox](x1x+), 

F{z) - F(z~) = F(s~)#i[0e](s--, z) + FWiTiIlJC*-, z)} and 

/ ^ { l - i ^ K * - , * ) } = F ( ^ ) { 1 + Z1[0,](Z~,Z)}; 

to make our initial-value problem (25) well posed, in the sense of 
arranging that the history of F from c through x should determine its 
value "immediately thereafter" and that the history of F prior to z 
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should determine its value at z, it seems reasonable to require that 
certain elements of N, appearing as factors of F(x+) and F(z) in the 
second and fourth lines of (26), should have multiplicative inverses 
in the algebra N; moreover, there should be two other such elements 
which arise for c'èx>z, and four involving i£2. This is the intent of 
the following Regularity Axiom: 

AXIOM III. For each y in 5, each of the following has a multiplicative 
inverse in the algebra N: 

1 - K1[Ov](y,y+) and 1 - 2Ti[l,](y-, y), 

l - * i [ q j ( y , y - ) and 1 - Ki[l9](y+9 y), 
1 - K2[ly](y,y+) and 1 - K2[0v](y-, y), and 

l - * i [ l . l ( y , y - ) and l-K2[Oy](y+,y). 

I hasten to point out that this axiom is a restrictive imposition at 
not more than finitely many y's in any interval, because of the fa
miliar fact that if Z is in N and | Z \ < 1 then 1 — Z already has a multi
plicative inverse in N. We now have enough axioms to effect a reduc
tion to the context of Theorem E, as follows. 

THEOREM 2. There exists an ordered pair { Vi, V2) in OCtXOCt such 
that, for each c in 5, if F is in 0<B then these are equivalent: 

(i) F(z) = F(c) +Ki[F](c, z) for each z in 5, and 
(ii) F(z) = F(c) + (L)JIF- Vi for each z in S; 

whereasy if G is in 0(B then these are also equivalent: 
(iii) G(x) = G(c)+X2[G](^, C) for each x in 5, and 
(iv) G(x) = G(c) + (R)fe

x V2 • G for each x in S. 

I have shown elsewhere [8, Theorem 10. l ] how to establish this 
result for the special case investigated by Hildebrandt [2], involving 
the integrals of W. H. Young mentioned earlier in this lecture: 

(27) K![F](c,z) = (F) f V # and K*[G](x9c) = (F) f <fy-G. 

That pattern of argument can be extended directly to our present 
setting, once the appropriate formulas for Vi and V2 are available. 
Omitting other details, I should like now to display these formulas, 
since they involve explicitly the inverses postulated in Axiom III. 
Letting F = X i [ l ] and "F = jKr2[l] as in Theorem 1, I define 

Fi(*,«) = V(x,z) + £ V(y9y+){i-K1[0y](y,y+)}-'K1[0y](yiy+) 
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or 
= V(x,z)+ £ F ^ y ^ l l - J f i ^ l ^ y - ) } - ^ ^ ] ^ , - ) 

+ E F(H^y){ l -*i [ lJ(jH-,3»}- 1 *i[ lJö'+,y) , 

according as x<z or x>z, and similarly 

F2(*, *) = 7(x, z) + Z *2[iJ(y,y+){i - Jf2[iyl(y,y+)}-^(y,y+) 

+ E K*[0,](y-,y){l-KJLO,](y-,y)}-*V<y-,y) 
x<y&z 

or ___ 

+ E ^,[Q»](y+,y){l-^i[Q»](y+,y)}-ïF(y+ly), 

with Fi(x, #) = F2(x, x) = 0. The convergence is of the same nature as 
that indicated for the pair {A, B} in (24) in connection with Theo
rem 1. 

7. We are now almost ready to join together the integral operations 
K\ and K2. Let us first observe a corollary result, to Theorem 2, 
which ties our investigation here back to the continuous case of 
Wall's harmonic matrices and to Hildebrandt's investigation of the 
Young integral, and to my own 1955 investigation [5] involving the 
Stieltjes mean integrals [13; 8, §7] in this context: 

Cz F(x) + F(z) r 

(28) (M) F-d*. 0 [*(*) ~ *(*)]. 
«/ x 2 

An argument can be based on the unique solvability provided by 
Theorems E and 2, precisely as in the published proof of Wall's first 
theorem [17, pp. 161-162], to produce the following result. 

THEOREM 3. If Wi = Z(Vi) and W2 = S(F2) and, for each U in 0(B, 
each of K\\U\ and i£2[i7] is a member C of Ö® such that 

C{xy y) + C(y, z) = C(x, z) for all #, y, and z in S, 

then each of W\ and W2 is a member W of 09TC such that 

W(x, y) • W(y, z) = W(x, z) for all #, y, and z in S. 

Under what circumstances, we may ask, does there exist a single 
function W in the class 09fïl such that the solutions F and G of our 
Ki — Ki initial-value problem are both given in terms of W, as in the 
earlier problems involving differential equations or harmonic matri-
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ces? By Theorem E and Theorem 2, the answer is, of course, that V\ 
should be the same as Vi\ this condition is both necessary and suffi
cient. Let us make the simplifying assumption that F is F in our 
formulas, that is, that ^ [ l ] is i£ i [ l ] . 

Now, for Vi to be the same as F2, it is necessary and sufficient that 
for each y in S, symbolically, 

(29) "V, = Vy at (y-, y), (y, y+), (y+, y), and (y, y-),» 

and, for example, in the case of the first "pair" certain equivalent 
conditions are easily found to be 

{l-Ki[Ov](y-,y)}-lV(y-,y) = V(y-,y){l-Ki[lv](y-,y)}-ioT 
(30) 

FXy-.yJffxtl.Ky-.y) + K2[lv](y-,y)V(y-,y) = V{y-,y)\ 
Each of the other three cases can be reduced to this latter form, and 
so we are led to the Conjunction Axiom: 

AXIOM IV. Kx[l] = i £ 2 [ l ] = F and, for each y in S, 

My-, y) = Jv(y, y+) = Jv(y+, y) = Jv(y, y-) = 0, 

where Jv= V'K1[ly]+K2[ly] • F - F2. 
I t is time to summarize some of the main results of our investiga

tion up to this point. 

THEOREM 4. Assuming Axioms I through IV, there exists a function 
W in the class Qffî with the property that, for each c in 5, if each of F and 
G is a function from the real line S to the algebra N then 

(i) F belongs to 0(B and F(z) = F(c) +KX [F] (C, Z) for each z in S only 
in case F(z) = F(c) W(c, z) for each z in 5, and 

(ii) G belongs to 0(B and G(x) =G(c)+K2[G](x, c) for each x in S 
only in case G{x) = W(x, c)G{c) for each x in S. 

8. I t seems of interest now to enumerate some of the ordered pairs 
{K\, K%\ which satisfy all four of the axioms {Linearity, Boundednesst 

Regularity, and Conjunction). All such pairs, of course, must be avail
able from among the representations given in Theorem 1, with F 
the same as F. 

I t should come as no surprise that one pair is 

(31) lfi[F](*,«) = (L) ƒ V - F and K*[G](x, z) » (R) f V-G. 

In this case, of the left and right integrals, no added conditions are 
imposed by Axiom I I I . I should mention that in Hildebrandt's 
investigation, using the Young integral in both places, it was found 
that in general Wi is different from IF2, that is, our fourth axiom 
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fails. It turns out, now, that the interior integral and the Young 
integral form a natural pair, and I list also the typical elements of N 
required to have inverses: 

Ki[F](x,g) = (/) ƒ W and K2[G](x,z) = (F) ƒ V-G; 

(32) 
1-V(y,y+), l - 7 ( y , y - ) . 

In this case, the conditions contemplated in Theorem 3 hold provided 
V has the form d<t> for some function </> in 0(B. 

This latter remark applies also to the next, and final, instance I 
shall cite here : an instance in which the same integration process can 
be used in both places. The instance is that of the mean integral (also 
called the Stieltjes mean sigma integral), and again I list the typical 
elements of N required to have inverses: 

Ki[F](*, *) = (M) ƒ §F• V and K2[G](*, z) = (M) f V• G; 

(33) 
l - *7(y- ,y) , l - hV(y,y+), l - tv(y+,y), l - hV{y,y-). 

As well as having arisen in earlier investigations of mine [5; 6; 7] 
concerning quasi-harmonic matrices, these mean integrals also arise 
in a natural way in connection with W. H. Ingram's notion of the 
"jump-differential" [3]; indeed, it may very well be that Ingram has 
already solved the initial-value problem for finite systems of jump-
differential equations, using the type of hypothesis indicated here in 
(33). 

9. I remark, in passing, that there is a technique [8, §5] for treat
ing nonhomogeneous analogues of systems such as we have considered 
here, for instance 

(34) G(x) = G(c) + (R) f V-G + Q(x, c), 

where each of V and Q is a member of the class OOfc; the idea is to 
express this as a homogeneous system in an algebra of 2-by-2 matrices 
with elements in N. In the presence of Axioms I through III, that 
same technique carries over to give corresponding existence and 
uniqueness theorems for such a system as 

(35) G(x) = G(c) + K2[G](x, c) + Q(x, c); 

the details of the analysis would carry us too far afield if discussed 
at this time. 

The result, however, is germane to the question of what we have 
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gained by allowing the algebra N to be infinite dimensional, and it is 
to this question that I would like to address myself for a few minutes. 
One possible application, similarly noticed by T. H. Hildebrandt (oral 
communication, May 1960), is in the area of integral equations of 
what might be called Stieltjes-Vol terra type; an instance is 

(36) u(x) = (R) f dH(x, I)-u + h(x), 
J x 

where H and h are numerical functions defined, respectively, on 5 X 5 
and on 5, and where it is desired to determine a numerical function u. 
I have no theorems to present at this time, and will indicate only the 
formalities of the idea. 

If we have a suitably convergent expansion for H, then we may 
rewrite (36) in the form 

u(x) = ] £ An{x)gn(x) + h(x), where 
W') c 

H(%>y) = 23 An(x)Bn(y) and gn(x) = (R) J dBn-u. 

Operating on both sides of (37), we might then obtain an infinite 
system of linear equations 

(SS) 

gm{x) = 2 (R) I Vmn'gn + Crnfa c), where 
n * x 

ƒ y nv 

dBm'An and qm(x} y) = (R) I dBm-h, 
a system analogous to (34). If the infinite sequence g were found 
satisfying (38), then it might be substituted back in (37) to give a 
numerical function u. 

These are the formalities. What is needed here seems to be some 
sort of balance, between strength of an expansion theorem for the 
function JET, and strength of a topology for some infinite matrix alge
bra in which V has its values. 

10. Let us recall that in the development of the left and right 
integral theory (Theorems C, D, and E) we could equally well have 
assumed of 5 only that it was a linearly ordered set [8]. On the other 
hand, except in discussions involving the mean integral, no use is 
made of the availability of real numerical multipliers in the algebra 
N: all of the theorems presented here hold equally well if N is assumed 
only to be a complete normed ring (as in [8]). These facts lead me 
now to suppose only that 5 is a linearly ordered set, and to relinquish 
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the hypothesis of a norm for the ring N, in order to formulate a prob
lem which seems a natural outgrowth of the preceding development. 

PROBLEM. Given an Abelian group {G, + }, a topology Tfor G, a 
subring N of the ring of endomorphisms of {G, + } , and an order-
additive function V from SXS to N, to investigate the existence of 

(1) a function W from SXS to N such that if g is in G then 

W(x, s)g = g+ i(L) f°W(x, I)-v\g for all {x, z} inS X S9 

and (2) for each c in S, nontrivial functions u from S to G such that 

u(x) = u{c) + (R) I V-u for all x in S, 

where, in each case, the indicated integral exists as a limit with respect 
to the topology T. 

I should like to illustrate, in part, the intent of this twofold problem 
by exhibiting a solvable case which seems not to fall within the scope 
of the complete-normed-ring treatment. 

For {G, +} I take a Hubert space, with inner product function Q\ 
for T, the metric topology generated by the norm corresponding to Q; 
for N, a (necessarily commutative) ring of linear transformations 
(from G into G) Hermitian with respect to Q, which is closed in the 
"strong operator topology" and to which the identity transformation 
1 belongs. Inequalities between members of N refer to the usual par
tial ordering: 

(39) H2 » # i means Q(g9 H2g) ^ Q(g, Hxg) for all g in G. 

Now, öa + + denotes the class of all order-additive functions V from 
SXS to N such that F » 0 , and Ö2iïl++ denotes the class of all order-
multiplicative functions W from SXS to N such that W^>1. Note 
that if x is in 5 and W belongs to 09iïl++ then W(x, x) = l since it is 
idempotent and, therefore, is a projection P such that P^>1. Recall
ing that the product of two nonnegative members of N is again non-
negative, it is easy to see that arguments [8, §2 ] establishing Theorem 
C carry over, mutatis mutandis, to establish the following. 

THEOREM 5. There is a reversible function 8++ from 0a + + onto 0SÏÏI++ 
such that each of the following is a necessary and sufficient condition for 
the member { V, W} of ea++X02fH++ to belong to 8++: 

(i) V(x, z)g~ {x^y [W—l]}gfor each {x, z} in SXS and gin G. 
(ii) W(x,z)g~\xJlz [I+ V]} g for each {x, z) in SXS and gin G. 
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Direct computation, by analogy with the published argument for 
Theorem E [8, §4] serves to establish the fact that if W=Z++(V) 
then TV is a solution of Problem (1) and, for each c in 5 and nonzero g 
in G, the function W(I, c)g is a solution u of Problem (2) in this special 
setting. Theorem 5 and related ideas have been significantly extended 
by R. H. Cox [ l ] , who is presenting some of his results at this meet
ing, and this seems an appropriate place for me to stop. 
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