RESEARCH PROBLEMS

1. M. Slater: Number theory.

Research Problem 39 (Bull. Amer. Math. Soc. 68, p. 557) may be sharpened as follows:

Can the integers 1 through n be paired with the integers $n+1$ through $2 n$ so that no two of the $2 n$ sums and differences $b_{i} \pm i$ are equal?

This is impossible for $n=2,3,6$; but I conjecture it holds for all other n. The problem may be regarded as a refinement of the problem of arranging n queens on an n by n chess board so that no two queens attack each other. Examples are
$n=4:(1,7),(2,5),(3,8),(4,6)$.
$n=7:(1,9),(2,14),(3,12),(4,10),(5,8),(6,13),(7,11)$.
$n=9:(1,14),(2,18),(3,11),(4,13),(5,16),(6,12),(7,17),(8,15),(9,10)$.
(Received January 6, 1963.)
2. Richard Bellman: Analysis.

Let $u(z)$ be analytic in the region $|z|<a$, and consider the problem of determining the complex constants $c_{i}, i=0,1,2, \cdots, N$, so that

$$
Q\left(c_{1}, c_{2}, \cdots, c_{N}\right)
$$

$$
\begin{equation*}
=\int_{0}^{b}\left|u^{(N)}(z)+c_{1} u^{(N-1)}(z)+\cdots+c_{N} u(z)\right|^{2} d z \tag{1}
\end{equation*}
$$

is a minimum, where $b<a$. Denote the minimum value by Q_{N}. Then:
(a) What is the asymptotic form of Q_{N} as $N \rightarrow \infty$?
(b) What are the asymptotic forms of the minimizing c_{i} ?

Consider the more general problem where we wish to minimize

$$
Q\left(c_{0}, c_{1}, \cdots, c_{N}\right)
$$

$$
\begin{equation*}
=\int_{0}^{b}\left|c_{0} u^{(N)}(z)+c_{1} u^{(N-1)}(z)+\cdots+c_{N} u(z)\right|^{2} d z \tag{2}
\end{equation*}
$$

over $\sum_{i=0}^{N}\left|c_{i}\right|^{2}=1$. What is the asymptotic form of the minimum value as $N \rightarrow \infty$?

The paper On certain extremum problems for analytic functions, by W. W. Rogosinski and H. S. Shapiro, Acta Math. 90 (1953), 287-318, contains background material which may be relevant. (Received December 20, 1962).

