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1. The maximal semilattice homomorphic image of a semigroup 
S is the semilattice (commutative idempotent semigroup) Y such 
that every semilattice homomorphic image of 5 is also a homo­
morphic image of Y. The maximal semilattice decomposition of 5 is 
the decomposition of S into equivalence classes which are complete 
inverse images of members of F. We identify these classes with mem­
bers of Y. 

S will denote any semigroup and x any element of S unless stated 
otherwise. We follow the notation and terminology of [2]. Proofs 
of statements in this note will appear elsewhere. A subsemigroup N 
of S is called a face of S if, for all x, y (ES, xyEN implies x, y EN. A 
subset N of S is a face of S if and only if its complement in S is a 
prime ideal of S or is empty. 

DEFINITION. Let N(x) be the smallest face of S containing x and 
Nx — {yES\N(x) = N(y)}. The sets Nx will be called iV-classes and 
Y will denote the set of all distinct iV-classes of S together with the 
operation NxNy = Nxy. 

N(x) is the intersection of all faces of S containing x, Nx is a sub-
semigroup of 5, iV-classes define an equivalence relation on 5, and Y 
is a semilattice. Theorems 1 and 3 are our fundamental results. 

THEOREM 1 (cf. [ l ; 6]). Y is the maximal semilattice decomposition 
ofS. 

PROOF. Let Z be any semilattice decomposition of S (Z = S is such 
a decomposition). Let Bx denote the member of Z containing x. Let 
xy y (ES and suppose tha t y^Bx. Then Bx^By and thus either 
Bx<By or Bxd£Bv. In the first case we let T = \}B,*BV BZ and in the 
second T=\JBXZBX BZ. I t is clear that in either case T is a face of 
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S and that in the first case x(£.T, y<E:T and in the second x<ST, 
y&T. Therefore y<£Nx and thus NXQBX. 

The sets N(x) and Nx have a number of interesting properties. 

THEOREM 2. Let Ni(x) = (x), for n*zl let Nn+i(x) be the semigroup 
generated by all elements y of S such that Nn(x)r\J(y)7^[3* Then 
N(x)=\J^i Nn(x). Moreover N(x)^\JNy*Nx Ny. 

THEOREM 3 (cf. [S]). No ideal of any N"-class contains prime ideals* 

COROLLARY 1. S contains no prime ideals if and only if S is a single 
N-class. 

COROLLARY 2. There exists a one-to-one isotone (with respect to in­
clusion) mapping of the set of all prime ideals of S onto the set of all 
prime ideals of F. 

THEOREM 4. Nx is the largest subsemigroup of S containing x and 
containing no prime ideals. Moreover, Nx = {y<ES\x(xn) — x(uy) and 
x(yn)~x(v%) for some u, v&S, some natural number n, and all semi-
characters % °f S). 

2. Some interesting connections between the properties of each 
JV-class and the whole semigroup S can be established ; in particular 
properties concerning elements or ideals of iV-classes and 5. As an 
example we state two theorems. 

THEOREM 5. These are equivalent: 
(a) every N-class is a group ; 
(b) every left and every right ideal of every N-class is semiprime and 

two-sided; 
(c) every left and every right ideal of S is semiprime and two-sided; 
(d) for every xGS, x(ESx2r\x2S and xS = Sx; 
(e) for every xGS, NX = HX. 

Moreover, if any of these conditions holds, then Nx~ {y<ES\xS — yS}. 

THEOREM 6. These are equivalent: 
(a) Y is linearly ordered; 
(b) the set of prime ideals is linearly ordered under inclusion; 
(c) every nonempty intersection of prime ideals is a prime ideal. 

3. We give explicit expressions for the sets N{x) or N» for certain 
classes of semigroups. 

THEOREM 7. For every x £ S , SxS=Sx2S if and only if, for every 
xGS, N(x)= {yES\SxSQSyS}. 
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COROLLARY (cf. [3]). If S is a band, then for every xÇzS, N(x) 

DEFINITION. S is said to be weakly commutative if, for any 
x, 3>££, (xy)k = ax = yb for some a, 6(E5, and some natural number k. 

THEOREM 8 (cf. [4]). If S is weakly commutative, then N(x) 

= {yes\(x)nsy^a}. 
COROLLARY (cf. [S]). If S is weakly commutative, then these are 

equivalent : 
(a) S contains no proper semiprime [left] ideals; 
(b) 5 contains no prime [left] ideals; 
(c) for every x, yÇzS, (x)r\Sy9£{3' 
If S is periodic, let E be the set of all idempotents of S, and for 

eÇ.E, let i£ ( e ) = { x £ S | x n = efor some natural number n). Sis strongly 
reversible if, for any x, y(ES, (xy)r = x'y* = ylx' for some r, s, t. 

THEOREM 9. If S is periodic, then f or every x(ES, Nx = K(e), where 
xGX ( e ) , if and only if S is weakly commutative. 

COROLLARY (cf. [7]). If S is periodic, then these are equivalent: 
(a) KMK«>QKW=KW> for all e,fGE; 
(b) S is strongly reversible; 
(c) S is weakly commutative and E is a semigroup. 

Moreover, if any of these conditions holds, then N(x) =U/à<, i£ ( / ) where 
x(EzK(e), and Y and E are isomorphic. 
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