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1. Introduction. For polynomials in one variable it is well known 
that an equivalence holds between orthogonality on the real axis 
and recurrence relations of a certain form. If namely ^(x) is non-
decreasing for real x, has an infinity of points of increase, and has 
finite power-moments of all orders, and polynomials pn{x), of degree 
w = 0, 1, 2, • • • are formed so that 

ƒ 00 

pr(x)p8(x)dlP(x) = 0 (f 5* s), 9*0 (f = s) 

-oo 

then there holds [ l ] a three-term recurrence formula 

(1.2) Pn+li?) + (flnX + bn)pn(x) + pn-l{x) = 0, dn > 0, 

where we take formally £_i(x)=0, po(x) — l, and have incorporated 
suitable constant factors in the pn{x). Conversely [2] we may pass 
from (1.2) to the existence of at least one spectral function \[/(x) with 
respect to which (1.1) holds. The position is much less clear in respect 
to orthogonal polynomials in several variables, for which work has 
been devoted mainly to the approach which starts with the orthog
onality and to analogues of the classical polynomials. This field is 
surveyed in [3 ], where it is noted that there is a deficiency of results 
leading from recurrence relations to orthogonality. 

The purpose of this note is to indicate a genuine extension of (1.2) 
in the direction of several variables, preserving the usual oscillatory 
and orthogonal properties. We conclude by giving the relation be
tween the polynomials to be defined and certain determinants of 
ordinary orthogonal polynomials, considered in a recent series of 
papers by Karlin and McGregor [4] ; in addition, we indicate the rela
tion between this topic and the more general subject of simultaneous 
eigenvalue problems involving several parameters. 

2. The recurrence relations. For a fixed integer k ̂  1 we shall define 
k sets of polynomials £nr(X), r = l, • • • , i , of degree n in the k-
variables Xi, • • • , X*,; here we shall write X for the column-matrix 
formed by Xi, • • • , X .̂ Denoting by anr certain row-matrices of real 
coefficients anri, • • • , a>nrk and by bnr real scalars we define the ^»r(X) 
recursively by £_i,r(X) = 0, por(S) = 1, and 
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( 2 . 1 ) £n+],r(X) + (<WX + bnr)pnr{\) + £»-l,r(X) = 0. 

We write also boldface n for a &-tuple of integers (wi, • • • , nk)y and 
write \n\ =max(wi, • • • , # * ) ; in addition we use the notations 

(2.2) pn(\) = pnA^PnAV ' * * PnkkW 

and 

(2.3) an = det | a» r, r | r-i = det | anrra | r,,»i, 

the middle form consisting of row-matrices. 
We start by propounding the finite-dimensional boundary problem 

in which, for some positive integral w, we have 

(2.4) pmr{\) = 0, r = 1, • • • ,* . 

The solutions of these k simultaneous polynomial equations in k 
variables will be the eigenvalues, an eigenvalue being a fe-tuple of 
scalars. By a simple extension of the usual arguments we have then 

THEOREM 1. Let, for all n with \n\ <m, 

(2.5) an>0. 

Then the boundary problem (2.1), (2.4) has only real eigenvalues] if 
X, ix are distinct eigenvalues, then 

( 2 . 6 ) £ Onpn(\)pnQl) = 0. 
|n|<w 

For the proof we have the k Christoffel-Darboux formulae 

( 2 . 7 ) pmrQ0pm-l,M ~ pmr(p)Pm-l,rQO = X ) *ir(P ~ ÏÏPjrQOpjM, 
y-o 

for r = 1, • • • , k, for any column-matrices X, JU this being proved as 
in [l, §3.2]. If now X, ju are distinct eigenvalues, the left vanishes by 
(2.4), and eliminating (/x—X) we have 

m—1 

det' ] £ ajrpjrQOpjM 
i -0 

A; 

= o, 

where we recall that the ajr are row-matrices. Each row in this de
terminant is formed of the sum of m row-matrices, and the deter
minant may thus be expanded as the sum of mk determinants, and 
this is none other than (2.6). 

If now X were a complex eigenvalue, and ju were its complex con-
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jugate, (2.6) would yield a contradiction with (2.5), since at least one 
of the £n(X) is not zero, namely that given by n = (0, • • • , 0). 

3. The oscillation theorem. The orthogonality (2.6) is one of vec
tors of dimension mk

1 from which it follows that there are at most mk 

such vectors, and so at most mh eigenvalues. To show that there are 
exactly mk such eigenvalues is the role of certain Sturmian consider
ations, which will be presented in detail elsewhere [S]. The function 
pnrÇS) defined by (2.1) is to be completed to a piecewise linear func
tion pxr(k), coinciding with pnr(K) when x = n, so that we may assess 
the number of zeros of pxrQ0 as x increases from - 1 torn. Denoting 
by v a fe-tuple of non-negative integers (*>i, • • • , vk) we have 

THEOREM 2. For each v, \v\ <rn, there is an eigenvalue \(v) such that 
£*r(X(v)) exhibits just vr changes of sign as x increases in — Kx<tn. 

The proof to be given in [5] concerns Jacobian arguments applied 
to certain phase variables, and is distinct from the argument given 
in [6] for the analogous situation for differential equations. 

4. Orthogonality. We may now write (2.6) as a complete set of 
orthogonal relations 

(4.1) E anpniWpnQi™) = P("^, 
|n|<m 

where v, v' run through all fe-tuples of non-negative integers less than 
mt bvv> is the Kronecker symbol and the p(p) are positive. Passing to 
the dual orthogonality relations we have the orthogonality of the 
polynomials, or 

THEOREM 3. The polynomials £n(X), \n\ <m are orthogonal accord
ing to 

(4.2) E #„(XW)^(XW)/pW = tan'/On. 
\v\<m 

This is an orthogonality for only a finite number of the polynomials. 
For this we rewrite (4.2) as a Stieltjes integral in k dimensions, with 
respect to the ^-dimensional spectral function 

(4.3) *m(X) = E I / P ^ , 

the inequality X(v) 5=X being interpreted componentwise. We may then 
rewrite (4.2) as 

ƒ 00 

Pn(\)pn'(\)dyf/m(\) = ônn'/dn, 

the measure dypm(K) being understood as in [7, Chapter I I ] . 
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Making now w—»<*>, we may conclude that there exists at least 
one limiting (fe-dimensional) spectral function t^(X), bounded and 
(fc-dimensionally) nondecreasing, and such that 

(4.4) f %n(X)#»'(X)#(X) - W A n , 
J -00 

for all n. For this purpose we need the Helly-Bray theorems, modified 
to deal with the case of polynomial integrands in k dimensions. The 
uniqueness of the spectral function may be related, to some extent 
as in the usual case, to limit-point and limit-circle eventualities. 

5. Symmetries. For any integral ç ^ O w e now introduce the nota
tion (aq) for the square matrix formed by the row matrices aqv • • •, aQ]t; 
this is to be distinguished from the determinant, with boldface suffix, 
defined in (2.3). 

In considering possible symmetry properties of the (aq), let us first 
note the case in which the (aq) are all multiples of Ek, the feth order 
unit matrix, and the bqr are independent of r. We have in this case a 
"separation of variables," the £Wr(X) are polynomials in the Xr sepa
rately, drawn from one and the same set of ordinary orthogonal poly
nomials. The £„(X) given by (2.2) will be products of such poly
nomials, and the determinants of Karlin and McGregor will be linear 
combinations of such products. In what follows we describe a class of 
situations which include this. 

We denote by T the group of fe-by-fe permutation matrices S which 
commute with all the (aq)} g = 0, 1, • • • ; for simplicity we suppose 
also that the bqr are independent of r. In general, of course, V will 
consist only of £*, while in the case just described it will be the full 
symmetric group. The following is relevant to the case that T is the 
symmetric group or a nontrivial subgroup. 

We note the transformation formula 

(5.1) pn(s\) = ^„(x) , ser, 
where the fe-tuple of integers n is treated as a column matrix, and 5* 
is the Hermitean conjugate of S, which is the same as its inverse and 
its transpose, for a permutation matrix. For on replacing X by SX 
in (2.1) we have, with bn for bnr> 

( 5 . 2 ) ^» + l , r (5X) + (anrS\ + bn)pnr(S\) + £—l f , (SX) = 0. 

Let S be put explicitly in the form (8«,a(r))**-i, this being the entry 
in the rth row and 5th column, and o*(l), • • • , <r{k) being a permuta
tion of 1, • • • , k. Since (anjS^Sian), anrS is the rth row in 5(an), 
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which is found to be anff(r). Hence (5.2) is the same as the recurrence 
relation for ƒ>,»*<»•) (X), so that 

pnr(SX) = pna(r)0>)' 

We may then verify (5.1) by means of (2.2). 
Let now x(S) be a unitary representation of T by matrices. In 

extension of the above-mentioned determinants of orthogonal poly
nomials we define the polynomials 

(5.3) Pn(\) = £ Pn(S\)x(S) = Z PM»X(S). 
Sev Sev 

For any TGV we have then 

(5.4) Pn(T\) = £ pn(ST\)x(STT-*) = Pn(X)X(r"1). 
Sev 

We now set up orthogonality relations for the Pn(X). We recall 
that orthogonalities exist both of the type (4.1), with summation 
over n, and of the type (4,2), with summation over X, and again 
that they may be finite-dimensional as in (4.1)-(4.2) or infinite as in 
(4.4). Here we consider only the latter type. Assuming (4.4) we have 

fcopn(x)p*-(x)#(\) = EZx(%*(5') f V«(x)^v(x)#(x) 

= Z E x(SS'-i)/<*s*n. 
S £ ' 

(S*n**S'*n') 

Suppose now that the equation S*n = S'*n' has no solutions, that 
is to say, with f/=5*-15 ,* = 55'-1 , n = Un', UGT is insoluble. We 
may achieve this by confining n, n ' to a fundamental region of the 
set of {n} with respect to T, and have then 

(5.5) f°°P«(X)Pn'(X)#(X) = 0, 

excluding from consideration n which are invariant under some U, 
other than the identity. In the case when T is the full symmetric 
group, a suitable region is given by n\<n^< • • • <n^ 

Exploiting now the property, a consequence of (5.4), 

(5.6) Pn(T\)P*n>(T\) « P«(A)P*'(X), T G T, 

we see that under certain conditions (5.5) may be replaced by an 
integral over a fundamental region of euclidean fc-space with respect 
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to T. Again in the case of the symmetric group, we are led to the 
"simplex" Xi<X2< • • • <X&, which occurs in the work of Karlin and 
McGregor. 

6. Operator formulation. As in the case of [4], the recurrence rela
tions (2.1) possess continuous analogues in the shape of simultaneous 
Sturm-Liouville problems with several parameters. So far as oscil
latory properties are concerned, these have received some investiga
tion [6, pp. 248-251]; the associated orthogonality and eigenfunc
tion expansion were noticed by Hubert [8, pp. 262-267], who proved 
the latter in the case & = 2. There is no need to confine the investiga
tion to systems of equations of the same type; Theorem 1 is readily 
extended to, for example, recurrence relations coupled parameterwise 
with, say, partial differential equations. In view of the great variety 
of such problems, a Hubert space formulation is clearly called for. 
Here a somewhat misleading simplicity of the cases mentioned should 
be observed. In our present case the eigenf unctions are the sequences 
PnQ^(v))> orthogonal in the sense of (4.1), and we note that pn(X) is 
formed by (2.2), by pointwise multiplication of the solutions of the 
separate recurrence relations (2.1). With an abstract formulation, 
such pointwise multiplication must be replaced by a different con
struction, which we now outline. 

The problem (2.1), (2.4) is clearly included in the problem 

(6.1) Brfr + (Ar\)fr = 0, r = 1, • • • , *, fr E Hr, 

where the Hr are Hubert spaces, Br is a self-adjoint endomorphism of 
Hry Ar= (Ari, • • • , Ark) is a row-matrix of such endomorphisms, and 
X is again a column matrix of scalars. An eigenvalue is again a fe-tuple 
X for which (6.1) all have solutions fr^O. The corresponding fe-tuple 
CA» • ' • » ƒ * ) m a y be considered, in the natural way, as an element of 
the tensor product § = XI*—I ®Hr. To set up the latter, we introduce 
firstly a space & containing all finite linear combinations of fe-tuples 

(6.2) f = X) «u(/i«> * ' • > ƒ*«), fm G Hr 
u 

with scalars aU9 and for a second such entity 

8 = X ) Pv(gU, ' • • > ghv), grv G Hr, 
V 

define a scalar product (indicated by a dot), as in [9], 

k 

( f ' 6 ) = I l 1L<XUJ3V I J (fru-grv), 
u v r*=l 



1963] ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES 351 

where (fru'grv) is the scalar product in Hr. Denoting by ||fj| the associ
ated norm in §*, we complete & by admitting to & convergent 
series of the form (6.2). If then >̂J denotes the subset, in fact sub-
space, of f G § f s u ch that | | f | |=0, we define £ as ^V^o» with the 
same inner product. 

Suppose now that X, \x are distinct eigenvalues, corresponding to 
eigenelements (/i, • • • , ƒ&) and (/i, • • • , ƒ&). Forming the scalar 
product, in Hr, of (6.1) with/ r

+, and again with fry fr interchanged, 
we have on elimination of A — /z that 

det (Ar8fn fr) = 0 . 

This determinant may be regarded as a second inner product in § , 
with respect to which the eigenelements, considered in ^p, are orthog
onal; if as in (2.5) it gives a positive-definite form in § , we can pro
ceed to the reality of the eigenvalues. We-may also interpret the 
eigenvalue equations (6.1) in § , corresponding to the partial differen
tial or difference equations considered in [4]. 

Regarding the symmetries considered in §5 of this paper, the 
permutation operators 5 considered there constitute isometries of £ , 
commuting with the operators of (6.1). A superficial resemblance 
will be evident with some of the constructions of [ l0] . 
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