POLYHEDRAL NEIGHBORHOODS IN TRIANGULATED MANIFOLDS

BY RONALD H. ROSEN¹

Communicated by Eldon Dyer, December 24, 1962

This note is an outline of some of the author's recent work concerning triangulated manifolds. A combinatorial structure is never assumed; indeed with this condition added, our results are mostly corollaries to well known theorems. The purpose of these investigations is two-fold: it is possible that they may lead to a proof of the cellularity of vertex stars in manifolds (a result that would have critical implications for the theory); but also, should a noncombinatorial triangulation of a manifold be found, they might serve as a starting point for the local study of such examples.

Our tools are:

- I. The generalized Schoenflies theorem of Brown and Mazur [2; 3].
- II. Let M be a compact Hausdorff space which is the union of two open sets each of which is a homeomorph of E^n ; then M is homeomorphic to S^n (we write $M \approx S^n$). This is an immediate consequence of I.
- III. If the cone over Y (= C(Y)) is *n*-euclidean at the vertex, then the suspension of Y (= S(Y)) is topologically S^n . This proposition of Mazur [3] follows from II.

The join of spaces X and Y is written $X \circ Y$. The kth barycentric subdivision of a polyhedron P is denoted by kP . Let (K, L) be a polyhedral pair. The stellar neighborhood of L in K (= N(K, L)) is the union of all open simplexes of K with vertices in L. The closure of N(K, L) is represented by St(K, L) (read star in K of L). For a simplex w in K let Lk(K, w) be the link of w in K, and Cl(K, w) (= $w \circ Lk(K, w)$) be the cluster of w in K. For a simplex $w = u \circ v$ let D be the set of midpoints of segments from u to v and let B(w, u) be the union of all straight segments $x \circ p$ in w with $x \in u$ and $p \in D$. If L is full in K define the barrel neighborhood B(K, L) of L in K as the union of all sets B(w, u) with w and u simplexes of St(K, L) and L, respectively.

If K is homogeneous (in the sense of [1]) then the double of K, or 2K, consists of K and a disjoint copy K' with their combinatorial boundaries canonically identified. A quotient space of X whose only possible nondegenerate element is Y will be written X/Y. A subset A of an n-manifold is *cellular* if it is the intersection of n-cells (C_i)

¹ This research was supported by contracts NSF-G24156 and Nonr (G)-00098-62.

with $C_{i+1} \subseteq \text{Int } C_i$ for all i. If $S(X) \approx S^n$, X will be called an (n-1)-pseudosphere.

M will hereafter always stand for a triangulated n-manifold and (K, L), for a polyhedral pair.

In [4] we have established:

THEOREM A. Let K be a full finite subpolyhedron of M. Then K is cellular if and only if $N(M, K) \approx E^n$.

THEOREM B. Each simplex of ¹M is cellular.

THEOREM C (Added in proof). Each cluster of ²M is cellular.

Next we shall sketch the proofs of:

THEOREM 1. Let e be a 1-simplex of M. Then $2St(^{1}M, ^{1}e) \approx S^{n}$.

Corollary. St(${}^{1}M$, ${}^{1}e$) $\times I \approx I^{n+1}$.

THEOREM 2. Let T be a polyhedral tree in M. Then $2St(^2M, ^2T) \approx S^n$.

COROLLARY, St(${}^{2}M$, ${}^{2}T$) $\times I \approx I^{n+1}$.

LEMMA 1. Suppose L is full in K. Then N(K, L) is an open mapping cylinder from Bd B(K, L) over L.

COROLLARY. $N(K, L)/L \approx C(\text{Bd } B(K, L)) - \text{Bd } B(K, L)$.

LEMMA 2. Let L be full in K. Then B(K, L) is piecewise linearly equivalent to $St({}^{1}K, {}^{1}L)$.

This may be verified on each maximal simplex of St(K, L) and then extended to the entire set.

LEMMA 3. Let K be a full subpolyhedron of M. Then $2St(^{1}M, ^{1}K)$ is an n-manifold.

LEMMA 4. Suppose e is a 1-simplex in K. Then B = B(Cl(K, e), e) $\approx C(Lk(K, e)) \times e$. If $x \in e$ then $C(Lk(K, e)) \times x = (x \circ Lk(K, e)) \cap B$.

LEMMA 5. Let $S(X) \approx S^n$. Then $X \times I$ contains a bicollared topological (n-1)-sphere which separates X_0 from X_1 .

LEMMA 6 (SCHOENFLIES THEOREM FOR PSEUDOSPHERES). Let $S(X) \approx S^n$ and $h: X \times I \rightarrow S^n$ be an imbedding. There is a homeomorphism of the pair $(S^n, h(X \times 1/2))$ onto (S(X), X).

LEMMA 7. Let (A, B) be a closed pair in S^n so that $A - B \approx X \times [0, 1)$, where X is an (n-1)-pseudosphere. Then B is cellular.

LEMMA 8. Let w be a k-simplex of M. Then $S^k \circ Lk(M, w) \approx S^n$.

COROLLARY. $Cl(M, w) \times I$, C(Cl(M, w)) and S(Cl(M, w)) are all homeomorphic to I^{n+1} .

PROOF OF THEOREM 1. Let B = B(M, e), e = ab and p be the barycenter of e. For each $x \in e$ let $D_x = [x \circ Lk(M, e)] \cap B$. D_p divides B into two clusters C_a and C_b which are incident on D_p ; C_a and C_b are piecewise linearly equivalent to Cl(M, a) and Cl(M, b), respectively.

Now let $U = C_a \cup C'_a - 2D_p$ in 2B. Clearly we also have $U \approx 2C_a - D_p \subseteq 2C_a \approx S^n$. By Lemma 4 for each $x \in ap - p$, $2D_x \approx S(\operatorname{Lk}(M, e))$; the latter is an (n-1)-pseudosphere by Lemma 8. It follows by Lemmas 4 and 7 that $U \approx E^n$. Since again by Lemma 4 $2D_p = \operatorname{Bd} U$ is bicollared in 2B, U can be expanded to an open n-cell containing $C_a \cup C'_a$. Proposition II is now invoked to show us that $2B \approx S^n$.

LEMMA 9. Let e=ab be a 1-simplex in K and p be the midpoint of e. There is a homeomorphism of $B({}^{1}Cl(K, e), a)$ onto the barrel neighborhood of ${}^{1}(ap)$ in ${}^{1}[ap \circ Lk(K, e)]$; furthermore the map is the identity except possibly where it is defined in $Cl({}^{1}K, ap)$.

This map may be found by central projection through a in each maximal simplex of Cl(K, e).

PROOF OF THEOREM 2. This proceeds by induction on the number of vertices of T. It is obvious for one vertex by III.

Assume T_1 and T_2 are disjoint nonempty trees in T and e is an edge such that $T_1 \cup e \cup T_2 = T$. Let B, B_1 and B_2 be the barrel neighborhoods of 1T , 1T_1 and 1T_2 , respectively, in 1M . By Lemma 9 the disjoint sets B_1 and B_2 can be stretched by homeomorphisms h_1 and h_2 so that $B = h_1(B_1) \cup h_2(B_2)$. Further $D = h_1(B_1) \cap h_2(B_2) \subseteq p$ o Lk(M, e) where p is the midpoint of e. It may now be seen from examining the map described in Lemma 9 that D is cellular in both $2h_1(B_1)$ and $2h_2(B_2)$; or one can deduce this from Lemma 4. The rest of the proof resembles that of Theorem 1.

BIBLIOGRAPHY

- 1. J. W. Alexander, The combinatorial theory of complexes, Ann. of Math. (2) 31 (1930), 292-320.
- 2. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
 - 3. B. Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59-65.
- 4. R. H. Rosen, Stellar neighborhoods in polyhedral manifolds, Proc. Amer. Math. Soc. (to appear).

University of Michigan and Columbia University