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This note is an outline of some of the author's recent work con­
cerning triangulated manifolds. A combinatorial structure is never 
assumed; indeed with this condition added, our results are mostly 
corollaries to well known theorems. The purpose of these investiga­
tions is two-fold: it is possible that they may lead to a proof of the 
cellularity of vertex stars in manifolds (a result that would have 
critical implications for the theory) ; but also, should a noncombina-
torial triangulation of a manifold be found, they might serve as a 
starting point for the local study of such examples. 

Our tools are: 
I. The generalized Schoenflies theorem of Brown and Mazur [2 ; 3] . 
II . Let M be a, compact Hausdorff space which is the union of two 

open sets each of which is a homeomorph of En; then M is homeo-
morphic to Sn (we write M«?5n). This is an immediate consequence 
of I. 

III . If the cone over Y (=C(Y)) is w-euclidean at the vertex, then 
the suspension of F ( = 5 (7 ) ) is topologically Sn. This proposition of 
Mazur [3] follows from II . 

The join of spaces X and Y is written X o F. The kth barycentric 
subdivision of a polyhedron P is denoted by kP. Let (K, L) be a 
polyhedral pair. The stellar neighborhood of Lin K ( = N(K> L)) is the 
union of all open simplexes of K with vertices in L. The closure of 
N(Ky L) is represented by St(K, L) (read star in K ol L). For a 
simplex w in K let Lk(i£, w) be the link of w in if, and Cl(K, w) 
( = w o Lk(K, w)) be the cluster of w in K. For a simplex w = u ov 
let D be the set of midpoints of segments from u to v and let B(w, u) 
be the union of all straight segments x o p in w with xÇiu and p(ED. 
If L is full in K define the barrel neighborhood B(Ky L) of L in K as 
the union of all sets B(w, u) with w and u simplexes of St (if, L) and 
L, respectively. 

If K is homogeneous (in the sense of [l]) then the double of K, 
or 2K, consists of K and a disjoint copy K' with their combinatorial 
boundaries canonically identified. A quotient space of X whose only 
possible nondegenerate element is F will be written X/ Y. A subset 
A of an w-manifold is cellular if it is the intersection of w-cells (C») 
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with Ci+i C Int d for all i. If S(X) «S», X will be called an ( » - 1 ) -
pseudosphere. 

M will hereafter always stand for a triangulated w-manifold and 
(i£, L), for a polyhedral pair. 

In [4] we have established: 

THEOREM A. Let K be a full finite subpolyhedron of M. Then K is 
cellular if and only if N(M, K) ~ E n . 

THEOREM B. Each simplex of 1M is cellular. 

THEOREM C (Added in proof). Each cluster of 2M is cellular. 

Next we shall sketch the proofs of : 

THEOREM 1. Let e be a 1-simplex of M. Then 2St(xM, le) «S w . 

COROLLARY. St(lM, le)Xl~In+l. 

THEOREM 2. Let Tbea polyhedral tree in M. Then 2St(2M, 2T) «S». 

COROLLARY. S t ( W , 2 r ) X l « J n + 1 . 

LEMMA 1. Suppose L is full in K. Then N(K, L) is an open mapping 
cylinder from Bd B(K, L) over L. 

COROLLARY. N(K, L)/L~C(Bd B(K, L ) ) - B d B(K, L). 

LEMMA 2. Let L be full in K. Then B(K, L) is piecewise linearly 
equivalent to St(1i^, 1L). 

This may be verified on each maximal simplex of St(if, L) and 
then extended to the entire set. 

LEMMA 3. Let K be a full subpolyhedron of M. Then 2St( lM, lK) 
is an n-manifold. 

LEMMA 4. Suppose e is a 1-simplex in K. Then B = B(Cl(Kf e), e) 
«C(LkCK, e))Xe. If x& then C(Lk(K, e))Xx = (x o Lk(K, e))C\B. 

LEMMA 5. Let S(X) « 5 n . Then XXI contains a bicollared topological 
(n~-l)-sphere which separates Xofrom Xi. 

LEMMA 6 (SCHOENFLIES THEOREM FOR PSEUDOSPHERES). Let 

S(X)^Sn and h:XXl-*Sn be an imbedding. There is a homeomor-
phism of the pair (5n , h(XXl/2)) onto (S(X), X). 

LEMMA 7. Let (A, B) be a closed pair in Sn so that i ~ 5 « l x [ 0 , 1), 
where X is an (n — 1)-pseudo sphere. Then B is cellular. 

LEMMA 8. Let w be a k-simplex of M. Then Sh o Lk(Af, w) « 5 n . 
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COROLLARY. C1(M, W)XI, C(C\(M, w)) and S(Cl(M, w)) are all 
homeomorphic to Iw+1. 

PROOF OF THEOREM 1. Let B = B(M, e), e = ab and p be the bary-
center of e. For each xÇ~e let Dx~ [x o Lk(M, e)\C\B. Dp divides B 
into two clusters Ca and C& which are incident on Dp\ Ca and C& are 
piecewise linearly equivalent to Cl(My a) and Cl(M, b), respectively. 

Now let U=CaSJCÏ~2Dp in 2B. Clearly we also have U~2Ca 

~DpÇZ2Ca~Sn. By Lemma 4 for each xGap-p, 2Dx~S(Lk(M, e))\ 
the latter is an (n — l)-pseudosphere by Lemma 8. It follows by 
Lemmas 4 and 7 that C/«En . Since again by Lemma 4 2Dp=Bd U 
is bicollared in 2B, Ü7 can be expanded to an open w-cell containing 
Ca\JCa . Proposition II is now invoked to show us that 2B^Sn. 

LEMMA 9. Let e —abbe a l-simplex in K and p be the midpoint of e. 
There is a homeomorphism of B(lCl(K, e), a) onto the barrel neighbor­
hood of l(ap) in 1[ap o Lk(K, e)]; furthermore the map is the identity 
except possibly where it is defined in Cl^K, ap). 

This map may be found by central projection through a in each 
maximal simplex of Cl(i£, e). 

PROOF OF THEOREM 2. This proceeds by induction on the number 
of vertices of 7\ I t is obvious for one vertex by I I I . 

Assume 7\ and Ti %xe disjoint nonempty trees in T and e is an edge 
such that TiUeVJT2

:=T. Let B, Bx and B% be the barrel neighbor­
hoods of x r , lT\ and 1T2> respectively, in lM. By Lemma 9 the dis­
joint sets B\ and B2 can be stretched by homeomorphisms hi and h2 

so that B = hi(Bi)yJh2{B2). Further D = h1(B1)r\h2(B2)Qp o Lk(M, e) 
where p is the midpoint of e. I t may now be seen from examining the 
map described in Lemma 9 that D is cellular in both 2hi(Bi) and 
2h2{B2) ; or one can deduce this from Lemma 4. The rest of the proof 
resembles that of Theorem 1. 
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