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Let f(z) be a function, meromorphic in \z\ < 1 , whose power series 
around the origin has integral coefficients. In [5], Salem shows that 
if there exists a nonzero polynomial p(z) such that p(z)f(z) is in H2, 
or else if there exists a complex number a, such that l/(f(z)—a) is 
bounded, when |JS| is close to 1, then f(z) is rational. In [2], Chamfy 
extends Salem's results by showing that if there exists a complex 
number a and a nonzero polynomial p{z), such that p(z)/(f(z)—a) 
is in H2

y then f(z) is rational. In this paper we show that if f(z) is of 
bounded characteristic in \z\ < 1 (i.e. the ratio of two functions, each 
regular and bounded in | z\ <1) , then f(z) is rational. Uf(z) is regular 
in \z\ < 1 , then, by [4], f(z) is of bounded characteristic in |2:| < 1 , 
if and only if 

ƒi 2ir 

log+ | f(reie) \dd < a>. 
o 

Thus any function in any Hp space (p > 0) is of bounded character
istic. Hence, since the functions of bounded characteristic form a 
field, our result includes those of Salem and Chamfy. 

Our first lemma gives a necessary condition for a function to be of 
bounded characteristic in \z\ < 1 , in terms of the properties of its 
Taylor series coefficients. 

If g{z) = ^ ° 1 0
 aiz\ w e denote by Ar = Ar(g) the matrix ||ai+y||, 

LEMMA 1. Suppose g(z) is of bounded characteristic in \z\ < 1 . Then 
det (4 r ) -^0 as r-*co. More precisely, limrH>00 |det(^4 r)| 1/r = 0. 

PROOF. By assumption, we may write g(z) =s(z)/t(z)y where s(z) 
and t(z) are bounded analytic functions in \z\ < 1 . Suppose that 
s{z) = X^Lo sizi and t{z) = ]££o ^2*> a n d , without loss of generality, 
tha t / o=L We now perform a series of column and row operations 
on the matrix Ar. Denote its columns from left to right by Co, £i> 
C2y • • • , cr. Now, successively, for j = 0} 1, 2, • • • , r, replace the 
column cr-j by X)ï»o tiCr-j-i\ then perform the same sequence of 
operations on the rows. This yields a matrix P r = ||dmn||» 0^mf n^r. 
Since / 0 = 1, det(Dr)=det(Ar). 
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I t is easy to verify that 

m n 

# m » = = / j / j titjdm-\-n—i—j» 

Hence dmn is the coefficient of zm+n in 

m n oo 

23 Uzi YJ h* 23 akz
k 

i « 0 y - 0 A:=0 

(i) - Uz) - i : tiZ)Uz) - z tfl)g(z) 

( 00 00 \ 00 00 

t(z) - X) M ' ~ Z tjzt)s(*) + g(z) S te' S ^ ' . 
since t(z)g(z) =5(2). As the coefficient of zm+n in the last term of (1) 
is 0, dmn is the coefficient of zm+n in 

( m n 00 v 00 

23 ^ + 23 ^ - 23 tj**) 23 
y=o y=o y=o / y=o Hence 

(*"mn = = Oimn 

where amn = 23*U *tfm+n-* and /3mrl = 23f="on *tfm+n-<. Then, by 
Schwarz's inequality, 

(2) \ dmn\* ^ 3(\ amn\* + I OLnm "T~ Pmn / • 

We now show that 
r r 

23 23 I dmn\
2 = o(r). 

To do this, it suffices to show that 
r r 

23 23 I aw I2 = 0M, 
m—0 w»*0 

and that 

Now, amn is the coefficient of zm+n in 23£o ^*23y^n Sys'. Hence, by 
Parseval's equality, 

(3) 
00 1 / » 27T 00 

23 I «»*« I2 = lim -— I /(«) 23 **' <Z0, 
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where z = peie. Now t(z) is bounded in | z\ < 1 by, say, T. Thus, again 
using Parseval's equality, we have, when \z\ = p < l , 

(4) 

J / • 2» I » 12 2""2 /» 2 T | oo 

2TT J o I Î Œ W J 27T •/ 0 I i—n 

= ̂ 2E Nv*. 
Put 5 n = X)«Ln I si\2- Then, as s(z) is bounded, 5o is finite and Sn—>0 
as w—> oo. By (3) and (4), we have 

Hence 

(5) 

Ë l**»!* â r25n. 

È È l«-M r2E^„ = ow. 

Now, |3mn is the coefficient of zm+n in the bounded function s(z)t(z) 
— S i " o «<z*. Then, 

£ |&»»|2^ Z|/3m«|2 = E U.-I2. 

Thus, 

(6) É É l/M2 = °W-
n=0 ra=0 

Hence, by (2), (5), and (6), 

E Z |d»»|»»»(r). 
m=0 n=0 

We now estimate det(D r). By Hadamard's inequality, 

(7) | det(Z>r)|
2 g ï I É I 4-1*. 

m«0 w=0 

The right hand side of (7) is the (r + l)st power of the geometric mean 
of the quantities ]TX«o |^mn|2, O ^ m g f . Hence, by the inequality 
between arithmetic and geometric means 

i det(D,) i*/<'+i> s - J — i ; è i *«.i* = *(i). 
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Hence, since det(Dr) =det(^4 r), we have 

lim I det(Ar)\
lir = 0. q.e.d. 

By a change of variable we obtain 

LEMMA 2. Suppose g(z) is regular at s = 0, and of bounded character
istic in \z\ <s. Then limr^ sr\det(Ar(g))\2tr = 0. 

THEOREM 1. Letf(z) be a function of bounded characteristic in \z\ < 1, 
whose Laurent series around the origin has integral coefficients. Then 
f(z) is rational. 

PROOF. By multiplying f(z) by a power of s, if necessary, we may 
assume that f(z) is regular at 2 = 0, and has a power series expansion 
ƒ(z) = ]C*Lo a*2*> w n e r e the ai a r e integers. By Lemma 1, 
limWH>00 det(^4n( /))=0. As the ai are integers, so are the det(^4n(/)). 
I t follows that detC4»(/))=0 for all large n. But this implies that 
f(z) is rational, by a theorem by Kronecker [l, p. 138]. 

COROLLARY. Let f(z) be a function meromorphic in \z\ < 1 , whose 
Laurent series around the origin has integral coefficients. If there exists 
a set S of positive capacity, such that for each « 6 5 , the equation f (z) = a 
has only finitely many solutions in \z\ < 1, then f(z) is rational. 

PROOF. If f(z) satisfies only the second condition, then by a theo
rem of Frostman [3] or [4, p. 260], ƒ(z) is of bounded characteristic, 
q.e.d. 

Let K be an algebraic number field of degree n over the rationals; 
denote by K(i), 1 ^i^n, the different embeddings of K into the field 
of complex numbers. If a G X , denote by a(i) the image of a in K^K 

THEOREM 2. Let f(z) = X ^ o aJzl be a formal power series whose 
coefficients a, are algebraic integers in K. Suppose that f ^ (z) = ]C£o a^ZJ 

is of bounded characteristic in the disc \z\ <Si> l^i^n, where HjLi Si 
è l . Then f (z) is a rational function. 

PROOF. Put Ar = Ar(f) and A® = Ar(f»). By Lemma 2, 
as f—• oo. Hence 

Nm det(4 r) = f[ d e t U , 0 ) -» 0 

as r—> oo. Since Nm det(Ar) is an integer, it is eventually 0. Hence by 
the theorem of Kronecker (whose proof is valid over any field) [l, 
p. 138], f(z) is rational. 
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We shall consider C1 vector fields X, F on a compact 2-manifold 
M. When the Lie bracket [X} Y] vanishes identically on M, we say 
that X and Y commute. I t was shown in [ l ] that every pair of com
muting vector fields on the 2-sphere S2 has a common singularity. 
Here we extend this result to all compact 2-manifolds with nonvanish-
ing Euler characteristic. 

Our manifolds are connected and may have boundary. The bound
ary of a compact 2-manifold is either empty or consists of finitely 
many disjoint circles. Given a Cl vector field Z o n a compact mani
fold M, we tacitly assume that X is tangent to the boundary of M 
(if it exists). Then the trajectories of X are defined for all values of 
the parameter, and translation along them provides a (differentiable) 
action £ of the additive group R on M. Given x(EM, one has X(x) = 0 
if, and only if, x is a fixed point of £, that is, £(s, x) =x for all sÇ:R. 
Let Y be another C1 vector field on M, generating the action rj of R 
on M. The condition [X, F ] = 0 means that £ and rj commute, that 
is, £(s, ri(t, x))—r)(ty £(s, x)) for all xQM and 5, tÇzR- Thus the pair 
X, Y generates an action 4>: R2XM—>M of the additive group R2 on 
My defined by #(r, x)=^(sf rç(/, x))=rj(ty £(s, x)) for xGM and 
r= (Sy t)GR2. Notice that xGM is a fixed point of <j> if, and only if, 
x is a common singularity of X and F, that is, X(x) — Y(x) = 0. These 
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