POWER SERIES WITH INTEGRAL COEFFICIENTS

BY DAVID G. CANTOR

Communicated by P. T. Bateman, January 17, 1963

Let f(z) be a function, meromorphic in |z| < 1, whose power series around the origin has integral coefficients. In [5], Salem shows that if there exists a nonzero polynomial p(z) such that p(z)f(z) is in H^2 , or else if there exists a complex number α , such that $1/(f(z) - \alpha)$ is bounded, when |z| is close to 1, then f(z) is rational. In [2], Chamfy extends Salem's results by showing that if there exists a complex number α and a nonzero polynomial p(z), such that $p(z)/(f(z) - \alpha)$ is in H^2 , then f(z) is rational. In this paper we show that if f(z) is of bounded characteristic in |z| < 1 (i.e. the ratio of two functions, each regular and bounded in |z| < 1), then f(z) is rational. If f(z) is regular in |z| < 1, then, by [4], f(z) is of bounded characteristic in |z| < 1, if and only if

$$\limsup_{r\to 1^-} \int_0^{2\pi} \log^+ \left| f(re^{i\theta}) \right| d\theta < \infty.$$

Thus any function in any H^p space (p>0) is of bounded characteristic. Hence, since the functions of bounded characteristic form a field, our result includes those of Salem and Chamfy.

Our first lemma gives a necessary condition for a function to be of bounded characteristic in |z| < 1, in terms of the properties of its Taylor series coefficients.

If $g(z) = \sum_{i=0}^{\infty} a_i z^i$, we denote by $A_r = A_r(g)$ the matrix $||a_{i+j}||$, $0 \leq i, j \leq r$.

LEMMA 1. Suppose g(z) is of bounded characteristic in |z| < 1. Then $\det(A_r) \to 0$ as $r \to \infty$. More precisely, $\lim_{r \to \infty} |\det(A_r)|^{1/r} = 0$.

PROOF. By assumption, we may write g(z) = s(z)/t(z), where s(z)and t(z) are bounded analytic functions in |z| < 1. Suppose that $s(z) = \sum_{i=0}^{\infty} s_i z^i$ and $t(z) = \sum_{i=0}^{\infty} t_i z^i$, and, without loss of generality, that $t_0 = 1$. We now perform a series of column and row operations on the matrix A_r . Denote its columns from left to right by c_0 , c_1 , c_2 , \cdots , c_r . Now, successively, for $j=0, 1, 2, \cdots, r$, replace the column c_{r-j} by $\sum_{i=0}^{r-j} t_i c_{r-j-i}$; then perform the same sequence of operations on the rows. This yields a matrix $D_r = ||d_{mn}||, 0 \le m, n \le r$. Since $t_0 = 1$, $\det(D_r) = \det(A_r)$. It is easy to verify that

$$d_{mn} = \sum_{i=0}^{m} \sum_{j=0}^{n} t_i t_j a_{m+n-i-j}.$$

Hence d_{mn} is the coefficient of z^{m+n} in

$$\sum_{i=0}^{m} t_i z^i \sum_{j=0}^{n} t_j z^j \sum_{k=0}^{\infty} a_k z^k$$
(1)
$$= \left(t(z) - \sum_{i=m+1}^{\infty} t_i z^i \right) \left(t(z) - \sum_{j=n+1}^{\infty} t_j z^j \right) g(z)$$

$$= \left(t(z) - \sum_{i=m+1}^{\infty} t_i z^i - \sum_{j=n+1}^{\infty} t_j z^j \right) s(z) + g(z) \sum_{i=m+1}^{\infty} t_i z^i \sum_{j=n+1}^{\infty} t_j z^j,$$

since t(z)g(z) = s(z). As the coefficient of z^{m+n} in the last term of (1) is 0, d_{mn} is the coefficient of z^{m+n} in

$$\left(\sum_{j=0}^m t_j z^j + \sum_{j=0}^n t_j z^j - \sum_{j=0}^\infty t_j z^j\right) \sum_{j=0}^\infty s_j z^j.$$

Hence

$$d_{mn} = \alpha_{mn} + \alpha_{nm} - \beta_{mn},$$

where $\alpha_{mn} = \sum_{i=0}^{m} t_i s_{m+n-i}$ and $\beta_{mn} = \sum_{i=0}^{m+n} t_i s_{m+n-i}$. Then, by Schwarz's inequality,

(2)
$$|d_{mn}|^2 \leq 3(|\alpha_{mn}|^2 + |\alpha_{nm}|^2 + |\beta_{mn}|^2).$$

We now show that

$$\sum_{m=0}^{r} \sum_{n=0}^{r} |d_{mn}|^2 = o(r).$$

To do this, it suffices to show that

$$\sum_{m=0}^{r} \sum_{n=0}^{r} |\alpha_{mn}|^2 = o(r),$$

and that

$$\sum_{m=0}^{r} \sum_{n=0}^{r} |\beta_{mn}|^2 = o(r).$$

Now, α_{mn} is the coefficient of z^{m+n} in $\sum_{i=0}^{\infty} t_i z^i \sum_{j=n}^{\infty} s_j z^j$. Hence, by Parseval's equality,

(3)
$$\sum_{m=0}^{\infty} |\alpha_{mn}|^2 = \lim_{\rho \to 1-} \frac{1}{2\pi} \int_0^{2\pi} |t(z) \sum_{i=n}^{\infty} s_i z^i |^2 d\theta,$$

where $z = \rho e^{i\theta}$. Now t(z) is bounded in |z| < 1 by, say, T. Thus, again using Parseval's equality, we have, when $|z| = \rho < 1$,

(4)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \left| t(z) \sum_{i=n}^{\infty} s_{i} z^{i} \right|^{2} d\theta \leq \frac{T^{2}}{2\pi} \int_{0}^{2\pi} \left| \sum_{i=n}^{\infty} s_{i} z^{i} \right|^{2} d\theta$$
$$= T^{2} \sum_{i=n}^{\infty} \left| s_{i} \right|^{2} \rho^{2i}.$$

Put $S_n = \sum_{i=n}^{\infty} |s_i|^2$. Then, as s(z) is bounded, S_0 is finite and $S_n \rightarrow 0$ as $n \rightarrow \infty$. By (3) and (4), we have

$$\sum_{m=0}^{\infty} |\alpha_{mn}|^2 \leq T^2 S_n$$

Hence

(5)
$$\sum_{n=0}^{r} \sum_{m=0}^{r} |\alpha_{mn}|^{2} \leq T^{2} \sum_{n=0}^{r} S_{n} = o(r).$$

Now, β_{mn} is the coefficient of z^{m+n} in the bounded function $s(z)t(z) = \sum_{i=0}^{\infty} u_i z^i$. Then,

$$\sum_{m=0}^{r} |\beta_{mn}|^{2} \leq \sum_{m=0}^{\infty} |\beta_{mn}|^{2} = \sum_{i=n}^{\infty} |u_{i}|^{2}.$$

Thus,

(6)
$$\sum_{n=0}^{r} \sum_{m=0}^{r} |\beta_{mn}|^2 = o(r).$$

Hence, by (2), (5), and (6),

$$\sum_{m=0}^{r} \sum_{n=0}^{r} |d_{mn}|^2 = o(r).$$

We now estimate $det(D_r)$. By Hadamard's inequality,

(7)
$$|\det(D_r)|^2 \leq \prod_{m=0}^r \sum_{n=0}^r |d_{mn}|^2$$

The right hand side of (7) is the (r+1)st power of the geometric mean of the quantities $\sum_{n=0}^{r} |d_{mn}|^2$, $0 \le m \le r$. Hence, by the inequality between arithmetic and geometric means

$$|\det(D_r)|^{2/(r+1)} \leq \frac{1}{r+1} \sum_{m=0}^r \sum_{n=0}^r |d_{mn}|^2 = o(1).$$

Hence, since $det(D_r) = det(A_r)$, we have

$$\lim_{r\to\infty} |\det(A_r)|^{1/r} = 0. \qquad \text{q.e.d.}$$

By a change of variable we obtain

LEMMA 2. Suppose g(z) is regular at z=0, and of bounded characteristic in |z| < s. Then $\lim_{r\to\infty} s^r |\det(A_r(g))|^{2/r} = 0$.

THEOREM 1. Let f(z) be a function of bounded characteristic in |z| < 1, whose Laurent series around the origin has integral coefficients. Then f(z) is rational.

PROOF. By multiplying f(z) by a power of z, if necessary, we may assume that f(z) is regular at z=0, and has a power series expansion $f(z) = \sum_{i=0}^{\infty} a_i z^i$, where the a_i are integers. By Lemma 1, $\lim_{n\to\infty} \det(A_n(f)) = 0$. As the a_i are integers, so are the $\det(A_n(f))$. It follows that $\det(A_n(f)) = 0$ for all large *n*. But this implies that f(z) is rational, by a theorem by Kronecker [1, p. 138].

COROLLARY. Let f(z) be a function meromorphic in |z| < 1, whose Laurent series around the origin has integral coefficients. If there exists a set S of positive capacity, such that for each $\alpha \in S$, the equation $f(z) = \alpha$ has only finitely many solutions in |z| < 1, then f(z) is rational.

PROOF. If f(z) satisfies only the second condition, then by a theorem of Frostman [3] or [4, p. 260], f(z) is of bounded characteristic. q.e.d.

Let K be an algebraic number field of degree *n* over the rationals; denote by $K^{(i)}$, $1 \leq i \leq n$, the different embeddings of K into the field of complex numbers. If $a \in K$, denote by $a^{(i)}$ the image of a in $K^{(i)}$.

THEOREM 2. Let $f(z) = \sum_{j=0}^{\infty} a_j z^j$ be a formal power series whose coefficients a_j are algebraic integers in K. Suppose that $f^{(i)}(z) = \sum_{j=0}^{\infty} a_j^{(i)} z^j$ is of bounded characteristic in the disc $|z| < s_i$, $1 \le i \le n$, where $\prod_{i=1}^{n} s_i \ge 1$. Then f(z) is a rational function.

PROOF. Put $A_r = A_r(f)$ and $A_r^{(i)} = A_r(f^{(i)})$. By Lemma 2, $s_t^r |\det A_r^{(i)}|^{2/r} \to 0$ as $r \to \infty$. Hence

Nm det
$$(A_r) = \prod_{i=1}^n \det(A_r^{(i)}) \to 0$$

as $r \to \infty$. Since Nm det (A_r) is an integer, it is eventually 0. Hence by the theorem of Kronecker (whose proof is valid over any field) [1, p. 138], f(z) is rational.

1963]

1. J. Cassels, An introduction to Diophantine approximation, Cambridge Tract 45, Cambridge Univ. Press, Cambridge, 1957.

2. C. Chamfy, Fonctions méromorphes dans le cercle-unité et leurs series de Taylor, Ann. Inst. Fourier Grenoble 8 (1958), 237-245.

3. O. Frostman, Über die defecten Werte einer meromorphen Funktion, 8 Congr. Math. Scand., Stockholm, 1934.

4. R. Nevanlinna, Eindeutige Analytische Funktionen, Springer Verlag, Berlin, 1936.

5. R. Salem, Power series with integral coefficients, Duke Math. J. 12 (1945), 153-172.

UNIVERSITY OF WASHINGTON

COMMUTING VECTOR FIELDS ON 2-MANIFOLDS

BY ELON L. LIMA¹

Communicated by Deane Montgomery, January 28, 1963

We shall consider C^1 vector fields X, Y on a compact 2-manifold M. When the Lie bracket [X, Y] vanishes identically on M, we say that X and Y commute. It was shown in [1] that every pair of commuting vector fields on the 2-sphere S^2 has a common singularity. Here we extend this result to all compact 2-manifolds with nonvanishing Euler characteristic.

Our manifolds are connected and may have boundary. The boundary of a compact 2-manifold is either empty or consists of finitely many disjoint circles. Given a C^1 vector field X on a compact manifold M, we tacitly assume that X is tangent to the boundary of M (if it exists). Then the trajectories of X are defined for all values of the parameter, and translation along them provides a (differentiable) action ξ of the additive group R on M. Given $x \in M$, one has X(x) = 0if, and only if, x is a fixed point of ξ , that is, $\xi(s, x) = x$ for all $s \in R$. Let Y be another C^1 vector field on M, generating the action η of R on M. The condition $[X, Y] \equiv 0$ means that ξ and η commute, that is, $\xi(s, \eta(t, x)) = \eta(t, \xi(s, x))$ for all $x \in M$ and $s, t \in R$. Thus the pair X, Y generates an action $\phi: R^2 \times M \to M$ of the additive group R^2 on M, defined by $\phi(r, x) = \xi(s, \eta(t, x)) = \eta(t, \xi(s, x))$ for $x \in M$ and $r = (s, t) \in R^2$. Notice that $x \in M$ is a fixed point of ϕ if, and only if, x is a common singularity of X and Y, that is, X(x) = Y(x) = 0. These

¹ Fellow of the John Simon Guggenheim Memorial Foundation. Work partially supported by the National Science Foundation, under NSF-G21514.