A TOPOLOGICAL CLASSIFICATION OF CERTAIN 3-MANIFOLDS

BY LEE NEUWIRTH

Communicated by Deane Montgomery, December 12, 1962

Introduction. In [1] J. Stallings proves that members of the class of closed irreducible 3-manifolds which are fibered over a circle by an aspherical 2-manifold may be distinguished from other closed irreducible 3-manifolds by their fundamental group alone.

He asks whether two members of this class of 3-manifolds are homeomorphic if they have isomorphic fundamental groups. This question is answered in the affirmative here, thus giving a classification of these manifolds according to their fundamental group.

The closed case. Let us denote by \mathfrak{M} the class of all 3-manifolds satisfying the following conditions:

(a) Manifolds of \mathfrak{M} are irreducible (every 2-sphere bounds a 3-cell).

(b) Manifolds of \mathfrak{M} are closed.

(c) Manifolds of \mathfrak{M} have fundamental groups which contain a finitely generated normal subgroup of order >2, with quotient group an infinite cyclic group.

THEOREM 1. Let M_2 be any closed irreducible 3-manifold. Let M_1 belong to \mathfrak{M} , then M_1 is homeomorphic to M_2 if and only if $\pi_1(M_1)$ is isomorphic to $\pi_1(M_2)$.

PROOF. One direction is trivial. By Stallings theorem [1] M_1 admits a fibering over S^1 , with fiber a closed 2-manifold T_1 . Let

$$(1) 1 \to H_1 \to G_1 \to Z \to 0$$

denote the sequence of fundamental groups of T_1 , M_1 , S^1 , respectively corresponding to this fibering. Let ρ^* denote the assumed isomorphism from $\pi_1(M_1) = G_1$ to $\pi_1(M_2) = G_2$. Then ρ^* induces

(2)
$$1 \to H_2 \to G_2 \to Z \to 0.$$

Now, G_1 and G_2 are both described by giving the automorphisms ϕ_1^*, ϕ_2^* of H_1, H_2 , which are induced by a generator of Z, pulled back to G_1, G_2 , and then acting on H_1, H_2 by conjugation.

Since ρ^* is an isomorphism we may assume

(3)
$$\rho^* \phi_1^* = \phi_2^* (\rho^* | H_1)$$

According to Stallings theorem [1] there is a fibering of M_2 which induces (2). Denote by T_2 the fiber of this map. Cut M_1 , M_2 , along a fiber, obtaining $T_1 \times I$, $T_2 \times I$. Denote by $\phi_i: T_i \times 0 \rightarrow T_i \times 1$ the maps which repair these cuts. Clearly ϕ_i induces ϕ_i^* modulo an inner automorphism of H_i .

Now if a homeomorphism $\rho: T_1 \times I \rightarrow T_2 \times I$ can be found satisfying

(4)
$$\phi_2(\rho \mid T_1 \times 0) = \rho \phi_1,$$

then ρ defines a homeomorphism from M_1 to M_2 .

An algebraic map ρ^* from $\pi_1(T_1)$ to $\pi_1(T_2)$ is already defined, so according to a theorem of Nielson [2], and Mangler [4], there exists a homeomorphism $\rho_1: T_1 \to T_2$ such that $\rho_1^* = \rho^*$. Now $(\rho_1 \phi_1)^*$ $=(\phi_2(\rho_1 | T_1 \times 0))^*$. According to a theorem of Baer [3] (for orientable surfaces) and Mangler [4] (for orientable and nonorientable surfaces), the maps $\rho_1\phi_1$ and $\phi_2(\rho_1 | T_1 \times 0)$ differ by an isotopy of T_2 . Let us call this isotopy h_t . Then $h_0 \circ \rho_1 \circ \phi_1 = \rho_1 \circ \phi_1$, $h_1 \circ \rho_1 \circ \phi_1$ $=\phi_2(\rho_1|T_1\times 0)$. Define $\rho: T_1\times I \rightarrow T_2\times I$ as follows:

then

$$\rho(x, t) = (h_t \rho_1, t)$$

$$\rho(x, 1) = (h_1 \rho_1, 1)$$

$$\rho(x, 0) = (h_0 \rho_1, 0) = (\rho_1, 0).$$

~

So that

$$\rho \phi_1 = h_1 \rho_1 \phi_1 = \phi_2(\rho_1 \mid T_1 \times 0)$$

but

$$\phi_2(\rho \mid T_1 \times 0) = \phi_2(h_0\rho_1 \mid T_1 \times 0)$$
$$= \phi_2(\rho_1 \mid T_1 \times 0)$$

and so (4) is satisfied and the theorem is proved.

The compact case. As far as the compact nonclosed case is concerned a somewhat different approach may be adopted.

Suppose M_1 is a compact, *orientable*, irreducible, 3-manifold, and $\pi_1(M_1) = G_1$ contains a normal subgroup H_1 such that:

(a) H_1 is finitely generated.

(b) $G_1/H_1 \approx Z$.

(c) $H_1 \approx Z_2$.²

Having already investigated the case $\partial M_1 = \phi$, we may assume $\partial M_1 \neq \phi$. According to Stallings theorem [1] M_1 is fibered over S^1 with fiber a 2-manifold S_1 . Since M_1 is orientable this fibering implies

¹ Modulo an inner automorphism.

² This constitutes part of the hypothesis of Theorem 2.

LEE NEUWIRTH

each boundary component of M_1 is a torus. Denote by T_1, \dots, T_n these boundary tori. Since each boundary torus has a fibering induced in it, we may select curves m_i , l_i in each T_i such that m_i covers S^1 once under the projection of the fibering, and each l_i lies in a fiber. It follows then that m_i , l_i generate π_1 of T_i , but further, it also follows that each m_i , l_i is not homotopic to 0 in M_1 . Join each T_i to a base point, b, in M_1 by an arc α_i . Then by the above remarks each natural map $\pi_1(T_i \cup \alpha_i, b) \rightarrow \pi_1(M_1, b)$ is a monomorphism. Consider now the group $\pi_1(M_1, b) = G$ and subgroups $\pi_1(T_i \cup \alpha_i, b) = A_i$. If a different set of arcs α_i be selected, then a set of subgroups \overline{A}_i results, where each \overline{A}_i is a conjugate of A_i . In view of this, we may investigate the topological invariant $(G, [A_1], [A_2], \dots, [A_n])$, where G is $\pi_1(M_1, b)$ and $[A_i]$ is the conjugacy class containing A_i . Call this invariant the peripheral system of M_1 . (See [5] for the source of this invariant.)

THEOREM 2. Suppose a compact 3-manifold M_2 has peripheral system $(G', [A'_1], [A'_2], \cdots, [A'_n])$, then if there exists an isomorphism $\phi: G \rightarrow G'$, mapping $[A_i]$ onto $[A'_i]$, M_1 is homeomorphic to M_2 .

PROOF. By Stallings theorem [1], M_2 is fibered over S^1 with fiber a 2-manifold S_2 , where $\pi_1(S_2) = \phi(\pi_1(S_1))$. Now define homeomorphisms $\Psi_i: T_i \cup \alpha_i \rightarrow U_i \cup \beta_i$ (where U_i are the boundary tori of M_2 and β_i are arcs joining U_i to a base point in M_2) such that $\Psi^* = \phi$ for each element x in $\pi_1(T_i \cup \alpha_i)$. This may be done by virtue of [2] and the hypothesis. It is no loss of generality to assume the α_i all lie on one fiber, and similarly the β_i . Nielson's [2] may be slightly generalized (as in [6]) so that a homeomorphism Ψ_{n+1} may be constructed from the fiber containing the α_i to the fiber containing the β_i , satisfying $\Psi_{n+1}^* = \phi$ for elements x in H_1 , and agreeing with the Ψ_i on $(T_i \cup \alpha_i) \cap (\text{fiber containing } \alpha_i)$. Call the homeomorphism now defined on $\partial M_1 \cup (a \text{ fiber}), \Psi, \Psi$ may be extended to a small closed product neighborhood of $\partial M_1 \cup (a \text{ fiber})$. Denote by N this neighborhood, and, by Ψ the homeomorphism thereon defined. Now M_1 -(int N) is a solid torus of some genus (being fibered over an interval), and it is easily seen that Ψ^* maps the kernel of the inclusion $\pi_1(\partial(M_1 - \text{int } N)) \rightarrow \pi_1(M_1 - \text{int } N)$ onto the kernel of $\pi_1(\partial(M_2 - \operatorname{int} \Psi(N))) \rightarrow \pi_1(M_2 - \operatorname{int} \Psi(N)).$ (The argument is exactly that in [6], with H_1 taking the place of the commutator subgroup.) Hence (as in [6]) Ψ may be extended to all of M_1 and the theorem is proved.

BIBLIOGRAPHY

1. J. Stallings, On fibering certain 3-manifolds, Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, N. J., 1962.

2. J. Nielson, Untersuchungen zur Topologie der geschlossenen Zweiseitigen Flächen, Acta Math. 50 (1927), Satz 11, 266.

3. R. Baer, Isotopie von Kurven auf orientierbaren geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, Journ. f. Math. 159 (1928), 101.

4. W. Mangler, Die Klassen von topologischen Abbildungen einer geschlossenen Fläche auf Sich, Math. Z. 44 (1938), 541, Satz 1, 2,542.

5. R. Fox, On the complementary domains of a certain pair of inequivalent knots, Nederl. Akad. Wetensch. Proc. Ser. A 55=Indag. Math. 14 (1952), 37-40.

6. L. Neuwirth, The algebraic determination of the topological type of the complement of a knot, Proc. Amer. Math. Soc. 12 (1961), 906.

INSTITUTE FOR DEFENSE ANALYSES

THE PRODUCT OF A NORMAL SPACE AND A METRIC SPACE NEED NOT BE NORMAL

BY E. MICHAEL¹

Communicated by Deane Montgomery, January 16, 1963

An old—and still unsolved—problem in general topology is whether the cartesian product of a normal space and a closed interval must be normal. In fact, until now it was not known whether, more generally, the product of a normal space X and a metric space Yis always normal. The purpose of this note is to answer the latter question negatively, even if Y is separable metric and X is Lindelöf and hereditarily paracompact.

Perhaps the simplest counter-example is obtained as follows: Take Y to be the irrationals, and let X be the unit interval, retopologized to make the irrationals discrete. In other words, the open subsets of X are of the form $U \cup S$, where U is an ordinary open set in the interval, and S is a subset of the irrationals.² It is known, and easily verified, that any space X obtained from a metric space in this fashion is normal (in fact, hereditarily paracompact). Now let Q denote the rational points of X, and U the irrational ones. Then in $X \times Y$ the two disjoint closed sets $A = Q \times Y$ and $B = \{(x, x) | x \in U\}$ cannot be separated by open sets. To see this, suppose that V is a neighborhood of B in $X \times Y$. For each n, let

$$U_n = \{x \in U \mid (\{x\} \times S_{1/n}(x)) \subset V\},\$$

¹ Supported by an N.S.F. contract.

² The usefulness of this space X for constructing counterexamples was first called to my attention, in a different context, by H. H. Corson.