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INSTITUTE FOR DEFENSE ANALYSES 

THE PRODUCT OF A NORMAL SPACE AND A 
METRIC SPACE NEED NOT BE NORMAL 

BY E. MICHAEL1 

Communicated by Deane Montgomery, January 16, 1963 

An old—and still unsolved—problem in general topology is 
whether the cartesian product of a normal space and a closed interval 
must be normal. In fact, until now it was not known whether, more 
generally, the product of a normal space X and a metric space Y 
is always normal. The purpose of this note is to answer the latter 
question negatively, even if Y is separable metric and X is Lindelof 
and hereditarily paracompact. 

Perhaps the simplest counter-example is obtained as follows: Take 
Y to be the irrationals, and let X be the unit interval, retopologized 
to make the irrationals discrete. In other words, the open subsets of 
X are of the form f /U5, where U is an ordinary open set in the 
interval, and 5 is a subset of the irrationals.2 I t is known, and easily 
verified, that any space X obtained from a metric space in this 
fashion is normal (in fact, hereditarily paracompact). Now let Q de
note the rational points of X, and U the irrational ones. Then in 
XX Y the two disjoint closed sets A = QX Y and B = {(x, x) | xG U) 
cannot be separated by open sets. To see this, suppose that F is a 
neighborhood of B in X X Y. For each n, let 

Un= {xE U\({x} XS1/n(x))CV}, 

1 Supported by an N.S.F. contract. 
2 The usefulness of this space X for constructing counterexamples was first 

called to my attention, in a different context, by H. H. Corson. 
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where Si/n(x) denotes the 1/w-sphere about x in F. The Un cover U, 
and since U is not an Fa in X, there exists an index k such that 
VkC\Q9£0. Pick an x in Ukt^Q, and then pick y&Y such that 
|# —y\ < l /2&. Then (#, y)G^4, and we need only show that any 
rectangular neighborhood RXS of (x, y) in I X Y intersects V. To 
do that, pick x'ERnUk so that \x'-x\ <\/2h Then (a', :y)£i?X*S; 
also 

I #' — ? I S \x' — x\ + I # — V I < 1 = — ; 
1 - r | » j j ^ 2 * 2& * 

so (a', y ) G F because x 'G £7*. That completes the proof.3 

The space X in the above example is neither Lindelof nor separable. 
If Lindelof is desired, let F ' be an uncountable subset of the unit 
interval, all of whose compact subsets are countable; such spaces 
exist [l, p. 422], Letting X' be the unit interval, retopologized to 
make F ' discrete, we see just as before that X' is hereditarily para
compact and that X'XY' is not normal; moreover, because of the 
peculiar property of F ' , it is easily checked that X1 is Lindelof.4 This 
X' is still not separable; it can, however, be embedded as a closed 
subset of a separable, Lindelof, paracompact space X", and then 
X"XY' is also not normal.6 

Note that none of the above spaces X, X\ and X" are—or could 
be—perfectly normal, since the product of a paracompact, perfectly 
normal space and a metrizable space is known to be paracompact 
[2, Proposition 5], That explains why none of our X's are either 
hereditarily Lindelof, or separable and hereditarily paracompact, 
since—as is not hard to see—that would make them perfectly normal. 
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8 The above construction remains valid if F is any separable metric space which 
is not <r-compact, or, even more generally, any metric space which can be embedded 
as a non- F„ subset in another metric space. For instance, Y may be any infinite-
dimensional Banach space. 

4 If the continuum hypothesis is assumed, one can even find a Lindelof, hereditarily 
paracompact space whose product with the irrationals is not normal. 

5 Observe that both Xand X'—but not X"—have a (r-disjoint (and hence point-
countable) base. 


