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1. Introduction. A conjecture of long standing, posed by Professor 
W. H. Gottschalk, is whether an w-sphere cannot be a minimal set 
under a continuous flow, for an odd n greater than one. More gener­
ally, must a compact manifold which is minimal under a continuous 
flow have a nontrivial fundamental group. Or more generally yet, 
must a compact Hausdorff space which is minimal under a continuous 
flow have a nontrivial first integral cohomology group in the sense of 
Alexander-Wallace-Spanier. 

Now let X be a locally pathwise-connected compact Hausdorff 
space such that every map of X into Sl is nomotopic to a constant, 
i.e. T(X, Sl) = Q. Then it is shown in this paper that if X is minimal 
under a continuous flow, X must be totally minimal. The above ques­
tions then reduce to the existence of totally minimal flows. 

I t is further shown that for such spaces X a totally minimal flow 
cannot be locally almost periodic. So on such spaces one cannot have 
a locally almost periodic minimal flow. 

In particular, for a sphere or real projective space of odd dimension 
greater than one or for a lens space, if it is a minimal set under a 
continuous flow, then it is totally minimal and so it is not locally 
almost periodic. For terminology we refer to Gottschalk-Hedlund 
[4]. Incidentally, the above results constitute a partial answer to 
Problem 1 of [5]. 

2. The main theorem. In the case of compact Hausdorff spaces Xf 

it is known that ^(X) the Bruschlinsky group, which as a set is just 
w(X, S1), is isomorphic to the first integral A-W-S cohomology group 
HX(X). (See [ó].) So either of these groups being zero implies that 
ir(X, S1) is zero and every map of X to S1 induces the zero homomor-
phism on TTI(X). We may also derive this conclusion from the assump­
tion that TTX(X) has no factor group isomorphic with the integers. 

THEOREM. Let X be a compact, Hausdorff, locally pathwise-connected 
space such that for any map f from X to 51 , the induced homomorphism 
ƒ* on wi(X) is trivial. Then if X is a minimal set under a continuous 
flow, X is totally minimal. 

1 This work was supported by Contract NAS8-1646 with the George C. Marshall 
Space Flight Center, Huntsville, Alabama. 
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PROOF. Let (X, R, T) be the given transformation group. Now 
since (X, R, ir) is not totally minimal, there exists a closed syndetic 
subgroup G such that for all points b in X the orbit closure Cl(7r(ô, G)) 
is not all of X. Since we are concerned only with the additive struc­
ture of i?, we may assume without loss of generality that G is the sub­
group Z of the integers of R. 

Let Qi be the relation on X defined by the orbit closures of Z, 
namely xQiy if x is in Cl(7r(;y, Z)). Qi is an open and a closed relation 
(see [4, Chapter II]) and X is normal, and under these conditions 
one can easily see that the quotient space X*~X/Qi is Hausdorff. 
Let pi: X—>X* be the quotient map. 

Denote by Q2 the usual "modulo one" relation on the reals R and 
let p2i i?—>S* be the quotient map to the unit circle, denoted by the 
reals modulo one. We have that TT\XXR-^X maps the relation 
Ö1XÖ2 into the relation Qi and so induces a map on (XXR)/(QiXQ2). 
Now Qi and Q2 are both open, and so we may identify (XXR)/(Qi X Q2) 
and (X/Qi)X(R/Q2)> Thus w induces a continuous function ir* and ' 
the diagram 

XXR—^X 

P1XP2 Pi 

X*XSl >X* 

is commutative. I t follows easily that (X*, Sl, ir*) is a transformation 
group. 

For the remainder of the paper, let b be any chosen base point in 
X. Define i: R—>XXR by i(r) = (6, r). Consider the mapping 

i ir Pi 
R->XXR-^X£*X*. 

By assumption, (X, R, ir) is minimal, and so T O i(R) is dense in X 
and thus pi o ir o i(R) is dense in X*. 

Next consider the map 

i pi X P2 ?r* 
R-+XXR — 1-> I * X 5 ^ X*. 

Then (P1XP2) oi(R)= {pi(b)}xS1 is homeomorphic to SK So 
TT* o (P1XP2) oi(R) is the continuous image in X* of the compact 
set {Pi(b)}XSl and since X* is Hausdorff this image is compact 
while by the above commutative diagram, it is also dense in X*. So 

ir* o (pi X P2) o i(R) « pi o r o i(R) = X*. 
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Now since by assumption Cl(7r(6, Z)) is not all of X, X* does not 
reduce to a point. In the action (X*, 51, TT*) let K be the isotropy sub­
group of pi(b). Then K is a closed and proper and so finite subgroup 
of SK Let Z0 = Pï\K) in R. Then the above construction of (X*, S\ ?r*) 
may be repeated for the subgroup Z0 of i?. It follows that the new 
isotropy subgroup will be the identity in S1. So by proper choice of 
the subgroup Z0 in R, we may assume th^t the isotropy subgroup is 
trivial. Again without loss of generality we may assume that Z0 is Z. 

We may then define j : X*XSl—>S1 by j(x*, s)~s, and we have the 
diagram 

R^>{b} XR —^->-Y 

\ P1XP2 \pi 

S"l-{pi(b)} X S 1 ->X*9 

where 7r&* is the restriction of ir* to the pi(b)-fibre. Define 
g=j o (7T6*)~1 opiow oi. Then by commutivity, g~j o (piXpz) o i 
= £2. 

We shall need the following: 
DEFINITION. Let/ : A—>Sl be a map, where A is a closed intervaj of 

i?, one endpoint of which is zero and the other a real number r. Let 
P21R—+S1 be the usual quotient map, with the usual orientations. 
Now ƒ may be lifted to a map F: A-^R with ƒ(0) lifted to F(0) in the 
interval [0, 1) in a unique orientation preserving fashion. Define 
W. N. of j'(r) = Winding Number off=F(r)-F(0). Note that W. N. 
of pi at r is r, for all real r. 

Now the key to the proof is to show that while g and p% are identical 
by commutivity, their winding numbers are distinct. 

Define m—j o (T^)"1 o pi: X—»5X. Then by assumption, since 
w*(7Ti(X)) = 0, the degree of m is zero. Choose 0 < S < | , and let a 
be an index in X such that for (x, y) in a, rf(m(x), m{y)) <S, where d 
is the usual distance on the reals modulo one. Let j82 be in a, and let 
F be a pathwise-connected neighborhood of b such that V is in j3(#). 
Then for y and z in V, 

(a) there is a path cr: J—»F, 7= [0, l ] , where <r(0) =;y, <r(l) =2; 
(b) the winding number of the function mo<r: I—>Sl is less than 

2ô<l in absolute value. 
Now let 7T(Ô, r), for some r>0 , be any later point of the orbit of b 

which lies in V. Such exist since X is compact minimal. Then w oi: 
R->XXR-*X, restricted to the interval [0, r] , is a path p in X from 
b to 7r(6, r). Let <r be a path in F from TT(&, r) to b. 
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Let r*=[0, f ]U[0 , 1], the union space. Define 2 : T->X by 
2*= ixKJcr. Now S1 is a quotient space of T, upon identifying end-
points, and 2 induces a map 2 * : Sl—>X. Then 

But this map factors through I . S o m o S * induces a trivial map from 
TTICS1) to iriCS1). 

Now the degree of m o 2 * is the sum of the winding numbers of 
m o 2 * restricted to the images of [0, r] and [0, l ] with the usual 
orientation. But this degree must be zero. So the winding number of 
m o jut is the negative of the winding number oi moa. 

Then | W. N. of mojji(r)\ < 2 ô < l . But rao/* = g on [0, r]. So 
|W. N. of g(r)\ < 2 S < 1 . Now since X is compact minimal there is 
some r o > l in R such that 7r(&, fo) is in V. Then 

| W. N. of g(rQ) | < 1, 

while W. N. of p2(rQ) = r 0 > l . 
The main theorem follows from this contradiction. There is an 

alternate proof using the covering map property (see [6]) on the 
above diagram. 

3. Some corollaries. We need the following: 

LEMMA. Let (X, T, TT) be a transformation group, where X is compact, 
Hausdorff and T is a locally compact, non-totally-disconnected, abelian 
group. Let T0 be the connected component of the identity in T and assume 
that ainX is such that ir{a, To) 7e a* Let X be minimal and locally almost 
periodic under T. Then X is not totally minimal. 

PROOF. By Theorem 10.07 of [4], we have for any b in 7r(a, To), 
b^a, that a and b are distal. Denoting by P the proximal relation, 
since X is locally almost periodic we have that P is a closed equiva­
lence relation (see [3]) and the induced transformation group 
(X/P, T, 7T*) is almost periodic minimal. Also aP^bP. So by the 
theorem of [2], X/P is not totally minimal, and so neither is X. 

The completion of this proof was aided by a conversation with 
J. Auslander. 

We now have the following four corollaries. 

COROLLARY 1. No sphere or real projective space of dimension greater 
than one, nor any lens space, can be a locally almost periodic minimal 
set under a continuous flow. 

PROOF. Immediate from the main theorem and the lemma. 
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COROLLARY 2. Let (X, R, ir) be a transformation group where R is 
the real numbers and X is compact, Hausdorff, locally pathwise-con-
nected, minimal and not totally minimal. Then 7r(X, S1) = irl(X) &Hl(X) 
5^0, and TTI(X) must have a factor group isomorphic to the integers. 

PROOF. A restatement of the main theorem. 

COROLLARY 3. Let (X, R, w) be a transformation group where R is the 
real numbers and X is a compact Hausdorff orientable manifold, mini­
mal and not totally minimal. Then Hi(X), Hl(X) and ^(X) have factor 
groups isomorphic to the integers. 

PROOF. In this case we have H?(X) ~H*(X) while HX(X) is wi(X) 
modulo its commutator subgroup. The corollary follows from Corol­
lary 2. 

COROLLARY 4. If G is a nontrivial, separable, connected, locally 
pathwise-connected, compact Hausdorff abelian group, then Hl(G) is 
nontrivial and irx(G) has a factor group isomorphic to the integers. 

PROOF. Every such group is almost periodic minimal under some 
continuous flow. (See [l].) 
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