ON A CON JECTURE CONCERNING PLANAR COVERINGS OF SURFACES

BY BERNARD MASKIT ${ }^{1}$

Communicated by Lipman Bers, January 29, 1963
C. D. Papakyriakopoulos [1] recently proposed two conjectures in conjunction with his work on the Poincaré conjecture. We present here three counter examples to the second of these. He has subsequently modified his conjectures [2] as suggested by these examples. The conjecture to be contradicted is the following.

Let S be a closed orientable surface of genus $g \geqq 2$. Let A_{1}, B_{1}, \cdots, A_{a}, B_{g} be a fundamental system of S based at o [1, p. 360]. Let $a_{1}, b_{1}, \cdots, a_{g}, b_{g}$ be the elements of $\pi_{1}(S, o)$ corresponding to $A_{1}, B_{1}, \cdots, A_{g}, B_{g}$ respectively; then

$$
\pi_{1}(S, o) \simeq F=\left(a_{1}, b_{1}, \cdots, a_{\theta}, b_{\theta}: \prod_{i=1}^{g}\left[a_{i}, b_{i}\right] .\right)
$$

Let ϕ be the free group freely generated by $a_{1}, b_{1}, \cdots, a_{g}, b_{0}$. Let τ_{j} be a word in the a 's and b's representing an element of $[\phi, \phi], j=1, \cdots, g$, Then for some subset (m, \cdots, n) of $(1, \cdots, g)$ the regular covering surface \tilde{S} of S, corresponding to $\left\langle\left[a_{m}, b_{m} \tau_{m}\right], \cdots,\left[a_{n}, b_{n} \tau_{n}\right]\right\rangle$ in F [1, p. 361, footnote 5], is planar.

The three examples are differentiated by the following properties.
A. The elements $b_{j} \tau_{j}$ in $F, j=1, \cdots, g$, can be represented by simple loops on S [1, p. 365].
B. The words $b_{j} \tau_{j}$ in the a 's and b 's are cyclically reduced.

In all three examples we take S of genus 2 , with the basis A_{1}, B_{1}, A_{2}, B_{2} as shown in Figure 1. For the first example we take $\tau_{1}=\left[b_{1}^{-1}, b_{2}\right]$, $\tau_{2}=\left[b_{2}^{-1}, b_{1}\right]$; this satisfies A but not B . In the second example $\tau_{1}=\left[b_{2}^{-1}, a_{1}^{-1}\right], \tau_{2}=\left[b_{1}^{-1}, a_{2}^{-1}\right]$; this satisfies B but not A. In the third example $\tau_{1}=\left[b_{2}, a_{2}\right], \tau_{2}=\left[b_{1}, a_{1}\right]$; this satisfies both A and B.

We present here a proof only for the third counter example. The proofs for the first two are essentially the same except that, for these, one does not need the explicit construction of a certain group, and in the second example there are 19 cases to consider, while there are 7 cases in both the first and third.

We now assume that \tilde{S}_{1}, the regular covering surface of S corresponding to $\left\langle\left[a_{1}, b_{1} \tau_{1}\right]\right\rangle\left(\tau_{1}=\left[b_{2}, a_{2}\right]\right)$, is planar. Let C_{1} be a loop on

[^0]

Figure 1
S representing [$a_{1}, b_{1} \tau_{1}$] as shown in Figure 2, and let C_{2} be a directed curve "parallel" to C_{1}. Let o be the point of intersection of C_{1} and C_{2} marked in Figure 2. We now lift C_{1} and C_{2} to \widetilde{C}_{1} and \tilde{C}_{2} respectively, starting at a point \tilde{o} over o. Since \widetilde{S}_{1} is planar, \widetilde{C}_{1} and \widetilde{C}_{2} must have a second point of intersection \widetilde{P} which projects to a point of intersection P, of C_{1} and C_{2}. If we orient S and lift the orientation to \widetilde{S}_{1}, then we can choose \widetilde{P} so that the sense of intersection at \widetilde{P} is the reverse of that at $\tilde{\delta}$, and by projection, the senses of intersection at P and o are reversed. Therefore P must be one of the points marked 1, $\cdot \cdots, 7$ in Figure 2. Furthermore, if we follow C_{1} from o to P and C_{2} from P to o, then the element of F corresponding to this loop lies in the defining subgroup for \tilde{S}_{1}.

We now have seven cases to consider. If, for example, P is the point marked 1, then the element of F obtained by the above construction is $b_{1}^{-1} a_{1} b_{1}$. But $b_{1}^{-1} a_{1} b_{1}$ cannot be in $\left\langle\left[a_{1}, b_{1} \tau_{1}\right]\right\rangle$, since the element of ϕ corresponding to the word $b_{1}^{-1} a_{1} b_{1}$ does not belong to $[\phi, \phi]$. The same reasoning shows that P cannot be any of the points marked 2, . . . , 6. Hence P must be the point marked 7. Therefore the above construction gives us that $\tau_{1} \in\left\langle\left[a_{1}, b_{1} \tau_{1}\right]\right\rangle$, i.e. τ_{1} belongs to the smallest normal subgroup of F containing $\left[a_{1}, b_{1} \tau_{1}\right]$.

Nothing in the above is changed if we replace \widetilde{S}_{1} by \widetilde{S}_{2}, the regular covering surface corresponding to $\left\langle\left[a_{1}, b_{1} \tau_{1}\right],\left[a_{2}, b_{2} \tau_{2}\right]\right\rangle$. Also if we look at Figure 2 upside down, the above construction shows that if \tilde{S}_{3}, corresponding to $\left\langle\left[a_{2}, b_{2} \tau_{2}\right]\right\rangle$, is planar, then $\tau_{2}=\tau_{1}^{-1}$ is in $\left\langle\left[a_{2}, b_{2} \tau_{2}\right]\right\rangle$.

The relation, $\tau_{1} \in\left\langle\left[a_{1}, b_{1} \tau_{1}\right]\right\rangle$, implies that τ_{1} must be the identity in the group

$$
G=\left(a_{1}, b_{1}, a_{2}, b_{2}:\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right],\left[a_{1}, b_{1} \tau_{1}\right],\left[a_{2}, b_{2} \tau_{2}\right]\right)
$$

where $\tau_{1}=\left[b_{2}, a_{2}\right]$ and $\tau_{2}=\left[b_{1}, a_{1}\right]$. Let us now consider a group Γ of 2×2 matrices on generators

$$
\alpha_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \beta_{1}=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right), \quad \alpha_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & -2
\end{array}\right), \quad \beta_{2}=\left(\begin{array}{rr}
-1 & 0 \\
-1 & -1
\end{array}\right)
$$

and the $\operatorname{map} G \rightarrow \Gamma$ defined by

$$
a_{1} \rightarrow \alpha_{1}, \quad b_{1} \rightarrow \beta_{1}, \quad a_{2} \rightarrow \alpha_{2}, \quad b_{2} \rightarrow \beta_{2}
$$

This is a homomorphism, since

$$
\left[\alpha_{1}, \beta_{1}\right]\left[\alpha_{2}, \beta_{2}\right]=1, \quad \alpha_{1}=\beta_{1}\left[\beta_{2}, \alpha_{2}\right], \quad \alpha_{2}=\beta_{2}\left[\beta_{1}, \alpha_{1}\right]
$$

as one can easily see. However, $\tau_{1} \rightarrow\left[\beta_{2}, \alpha_{2}\right] \neq 1$. We have arrived at a contradiction.

Figure 2
The assumption that \tilde{S}_{1} is planar leads to a contradiction. Hence \widetilde{S}_{1} is not planar.

The author wishes to thank Professor L. Bers and Dr. Papakyriakopoulos for many informative conversations.

References

1. C. D. Papakyriakopoulos, A reduction of the Poincare conjecture to other conjectures, Bull. Amer. Math. Soc. 68 (1962), 360-366.
2. -, A reduction of the Poincare conjecture to other conjectures. II, Bull. Amer. Math. Soc. 69 (1963), 399-401.

New York University

[^0]: ${ }^{1}$ This research was supported by the Office of Naval Research under Contract No. NONR-285(46) and by the National Science Foundation. The author is currently a National Science Foundation Graduate Fellow.

