ON A PROBLEM OF PAPAKYRIAKOPOULOS

BY ELVIRA STRASSER RAPAPORT

Communicated by Lipman Bers, January 29, 1963

Let P^* be the group generated by the symbols $a, b, c_2, d_2, c_3, d_3, \cdots, c_g, d_g$ and subject to the relation

$$G^*: aba^{-1}b^{-1}c_2d_2c_2^{-1}d_2^{-1}\cdots c_q^{-1}d_q^{-1} = 1.$$

Let w^* be an element of P^* and N^* the normal subgroup the word $R^* = w^* a w^{*-1} a^{-1}$ generates in P^* .

The question whether the factor group P^*/N^* is torsionfree (has no element of finite order) arose in connection with the Poincaré conjecture [4]. I shall sketch a proof of the fact that P^*/N^* is torsionfree (a detailed proof will appear elsewhere).

An extension E of a torsionfree group H by the free cyclic group is torsionfree, so I will present P^*/N^* as such an extension. Consider the normal subgroup H^* which the symbols $c_2, d_2, \cdots, c_g, d_g$ and bgenerate in P^*/N^* ; its factorgroup is the free cyclic group generated by a, so P^*/N^* is an extension of H^* by the free cyclic group generated by a. I shall show now that H^* is torsionfree.

The presentation below of H^* , from which the required property is clearly seen, is based on the infinite set of generating symbols b_k , c_{ik} , d_{ik} , where, for every integer k,

$$b_k = a^{-k}ba^k$$
, $c_{ik} = a^{-k}c_ia^k$, $d_{ik} = a^{-k}d_ia^k$.

The left-hand side of the defining relation G^* given above for P^* , written in terms of these symbols, becomes

$$G_0 = b_{-1}b_0^{-1}c_{20}d_{20}\cdots c_{g0}^{-1}d_{g0}^{-1}$$

and the conjugates $a^{-k}G^*a^k$ become

$$G_{k} = b_{k-1}b_{k}^{-1}c_{2k}d_{2k} \cdot \cdot \cdot c_{gk}^{-1}d_{gk}^{-1}.$$

The left hand side of the defining relation $R^*=1$ given above for P^*/N^* can also be written by means of these symbols: there is an integer h for which w^*a^h can be so written (namely when w^*a^h contains the symbol a to exponent sum zero), say, in the form

$$v_0 = v(b_s, \cdots, c_{2t}, \cdots, d_{gu}, \cdots),$$

so that, if we define

$$v_k = v(b_{s+k}, \cdots, c_{2,t+k}, \cdots, d_{g,u+k}),$$

for integral k,

$$v_{-1}^{-1} = v^{-1}(b_{s-1}, \cdots, c_{2,t-1}, \cdots, d_{g,u-1})$$

is the form taken by $a(a^{-h}w^{*-1})a^{-1}$, whence

$$R^* = w^* a w^{*-1} a^{-1} = w^* a^h a (a^{-h} w^{*-1}) a^{-1}$$

becomes

$$R_0 = v_0 v_{-1}^{-1}$$

and $a^{-k}R^*a^k$ becomes

$$R_k = v_k v_{k-1}^{-1}.$$

Letting x_{ij} stand for the symbols c_{ij} and d_{ij} , we get the following presentation H of the subgroup H^* of P^* :

$$H = (x_{ij}, b_j; G_j, R_j, i: 2, \cdots, g, j: 0, \pm 1, \cdots).$$

If the two sets of words $(G_j, R_j, j: 0, \pm 1, \cdots)$ and $(G_j, A_j, j: 0, \pm 1, \cdots)$ generate the same normal subgroup in the free group on the symbols of H, then

$$H = (x_{ij}, b_j; G_j, A_j, i: 2, \cdots, g, j: 0, \pm 1, \cdots).$$

I will pick the set A to suit my purpose.

If P^*/N^* has torsion, so does the group H [1]. I shall express H as the free product of isomorphic groups H_r , $r: 0, \pm 1, \cdots$, with a free subgroup amalgamated between H_r and H_{r+1} . If H has torsion, so does H_r [1; 2]. The latter will however prove torsionfree.

Using combinatorial arguments, it can be shown that there is an A_0 (cyclically reduced, i.e. not of the form zBz^{-1} for $z\neq 1$) with the following properties:

1. If A_0 contains any b_j -symbol, then it contains only b_0 ;

2. A_0 actually contains some x_{ij} -symbols, and either only j=0 occurs for these, or else A_0 contains an x_{ij} with j at most zero and also an $x_{i'j'}$ with j' at least one;

3. A_0 is not a formal power B^k unless $k = \pm 1$.

Suppose that among the subscripts j of the x_{ij} , $i: 2, \dots, g$ in A_0 the least is u, the largest v. Then, by property 2, above, either u=v=0, or $u \leq 0$, $v \geq 1$.

Let r be some integer. Define the groups H_r and S_r as follows:

$$H_r = (x_{i,j+r}, b_r; A_r, i: 2, \cdots, g, j: u, \cdots, v)$$

and S_r the subgroup of H_r generated by a set of elements x_r in H_r such that when $u \leq 0 < v$ for A_0

$$x_r = (x_{2,u+r+1}, x_{3,u+r+1}, \cdots, x_{g,u+r+1}, \cdots, x_{g,v+r}, b_r^{-1})$$

and when u = v = 0, x_r is the last element b_r^{-1} above.

Similarly, define the groups

$$H_{r+1} = (x_{i,j+r+1}, b_{r+1}; A_{r+1}, i: 2, \cdots, g, j: u, \cdots, v)$$

and T_r the subgroup of H_{r+1} generated by a set of elements X_r in H_{r+1} such that when $u \leq 0 < v$ for A_0

$$X_{r} = (x_{2,u+r+1}, x_{3,u+r+1}, \cdots, x_{g,u+r+1}, \cdots, x_{g,v+r},$$
$$b_{r+1}^{-1}c_{2,r+1}d_{2,r+1}c_{2,r+1}d_{2,r+1}^{-1}c_{3,r+1}\cdots d_{g,r+1}^{-1})$$

and, when u = v = 0, X_r is the last element listed above.

According to the Freiheitssatz [3], in a group on one cyclically reduced defining relation, every subset of the generating symbols gives rise to a free subgroup provided not every symbol present in that defining relation occurs in the set in question. This condition holds for the symbols of x_r in H_r and the symbols X_r in H_{r+1} . Therefore, properties 1 and 2 of A_0 , inherited by A_r and A_{r+1} , imply that the subgroups S_r and T_r are free groups isomorphic under the mapping that associates the two sets of elements x_r and X_r in the order given above.

Because of property 3 of A_0 , inherited by A_r , the group H_r is torsionfree [1], and so is the free product of H_r and H_{r+1} with amalgamation of S_r and T_r and, finally, the free product of all H_r with the (infinitely many) amalgamations of S_r and T_r , $r=0, \pm 1, \pm 2, \cdots$.

Inspection of the defining relations G = 1 shows that the last named group is H. Thus P^*/N^* is torsionfree.

BIBLIOGRAPHY

1. A. Karrass, W. Magnus, and D. Solitar, *Elements of finite order in groups with a single defining relation*, Comm. Pure Appl. Math. 13 (1960), 57-66.

2. A. G. Kurosh, The theory of groups. I, Chelsea, New York, 1956, p. 32.

3. W. Magnus, Ueber diskontinuierliche Gruppen mit einer definierenden Relation (der Freiheitssatz), J. Reine Angew. Math. 163 (1930), 141–165.

4. C. D. Papakyriakopoulos, A reduction of the Poincaré conjecture to other conjectures. II, Bull. Amer. Math. Soc. 69 (1963), 399-401.

POLYTECHNIC INSTITUTE OF BROOKLYN

404