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The results summarized here are the principle results of the au
t h o r s doctoral dissertation presented at the University of Chicago 
and written under the direction of E. M. Stein. These results will 
appear soon with proofs. 

We consider properties of classes of functions and distributions 
which are characterized by various smoothness and differentiability 
conditions. Similar classes have been studied by many investigators 
in recent years. Those papers touching most closely on the results 
given here are cited throughout this announcement. Special attention, 
however, is directed to the thorough list of references given recently 
by Nikolskiï in [9]. 

Our methods are analogous to those of Hardy and Littlewood in 
their study of analytic and harmonic functions in the unit disc (see 
[ó]) extended to the w-dimensional nonperiodic case by consideration 
of "Poisson integrals" of tempered distributions in the same spirit as 
Stein and Weiss [ l l ] , and Stein [lO]. 

We shall consistently denote by x and h elements of Eni and by y 
elements of the positive real axis. By Lp(En) = Lp we mean the normed 
linear space of measurable functions f(x) for which the norm 

ll/(*)IU = Il/Il* = [ f l/(*)N*"P 
is finite (1 ^ p < <x>). Using 

| I/O*) 11 * = ess sup |/(*) | , 

we define L^En)—!,* analogously. We also need notation for some 
mixed norms. Suppose f(x9 h) is measurable in x and h. Then define 

I I M *)iu - r f HA*. *)ir» i * r ^ T ' i = « < w > 
LJ heEn J 

and 

1 Preparation of this report supported in part by the U. S. Army Research Office 
(Durham), Contract No. DA-31-124-ARO(D)-58. 
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| |/(*, *)||i» = ess sup ||/(*, h)\\9. 

heEn 

If fix, y) is measurable in x and y define 

lltojfllU = [ J j l / to y)lllly"W]1/f| 

ll/(*,y)lt - [/^ll/^y)!!^"1^]17". 
ll/(*> y)|| J « = ^ s sup ||jf(*, y) | |w 

and 
H/fo y)||poo = ess sup ||/(«, y)||p. 

0 < î / < l 

If ƒ is a tempered distribution let Jafbe the Bessel potential of order 
a (a real) of/. ( ( J * / ) ^ = ( l + 4 7 r 2 | x | 2)~ a / 2 / , / t h e Fourier transform 
of/ .) (See Aronszajn and Smith [ l ] , and Calderon [3].) Define Lpa 

as the normed linear Lebesgue space of tempered distributions ƒ such 
that ƒ = Ja<t>> where </>ÇzLp, with norm ||/||pa = ||0lU-

If / £ L p a for some real a and l^p^t °°, then let ƒ(#, y) be the 
Poisson integral of/. (See Stein and Weiss [ i l , pp. 3S-45].) 

DEFINITION. Let a be a real number and a* be the smallest non-
negative integer greater than a and a* the largest nonpositive integer 
less than a. If f(x, y) is the Poisson integral of a tempered distribution 
we will let/(fc)(x, y) denote the kth derivative of f(x, y) with respect to 
y, k a non-negative integer. We then define a normed linear Lipschitz 
space of tempered distributions A(a; p, q; En)=A(a; p, q), a real, 
lûpyqS™ as the set of tempered distributions /G ip« # for which the 
norm ||/||a;p,fl = | | / | | p , a # + | | r ^ / ( a ) *(^ , y)| |£ is finite. 

THEOREM 1. J& is a topological isomorphism of A (a; p, q) onto 
A(ÛJ+]8; p> q) for all a, j8 real, 1 g £ , # ^ co. 

For 0 < c e < l the spaces A (a; p, oo) are the usual Lipschitz spaces 
Lip(a, p) or in the notation of Zygmund [13, vol. I, pp. 43-45] A«. 
A( l ; py oo ) is the A* space of Zygmund [13] or the A? space of Cald
eron. More generally, our notation agrees with Calderon in that 
A (ce; p, oo) are Calderon's spaces A« for all real a and 1 Spû °° (see 
[3]). For each q< 00, A (a; £, #) is a subspace of the so-called little 
Lipschitz spaces X£ of [13]. We also show that A(ce; p, p) is the IF£ 
space of Soboleff for nonintegral a > 0 and is the Besov space Bp* for 
all a ^ 0. For more historical details and connections with the spaces 

1 £q< 00, 

1 £ q < 00, 
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of Nikolskiï, Slobedetsky, Solonnikov, Gagliardo, Aronszajn and 
others see Nikolskifs recent survey [9] and the introduction to [12]. 
The precise connections are spelled out in the theorems below to
gether with the fact that W% is Lpa for non-negative integers a and 
1 < £ < 0 0 . 

THEOREM 2. Let fix) (ELP, 1 Sp Û °°, andf(x, y) be its Poisson inte
gral. Define for a fixed q, 1 g g g 00 : 

^-Il I *!-[ƒ(* +*)-/(*)llU 
B = || I h\-«[f(x + h) - 2f(x) +f(x - h)]\\pq, 

C-\\y*-V™(x,y)\\999 

D = \\y*-«PKx, y)\U 

onfap) = sup \\f(x + h) -f(x)\\p, 
0<\h\£t 

co2(/; ƒ>) = sup H/0 + /z) - 2/(*) + f(x - *)||PJ 
0 < | A | £ * 

a 00 \ l / q 

£ = sup /~acoi(/; ƒ>) if q = 00, 
l>0 

if l û q < °°, 

F = sup /~aü>2(/; ƒ>) if q = «>, 
0 0 

G = | |r«[M y) - '(*)]||M. 

If 0 < a < 1 and any of A, B, C, D, E, F, or G is finite, then so are all 
the others and the ratio of any pair is bounded above independent of ||/||p. 

If 0 < a <2 and any of B, D, or F is finite, then so are the other two 
and the ratio of any pair is bounded above independent of ||/||p. 

DEFINITION. Let r = (rh r2, • • • , rn) be an n-vector with non-nega
tive integer components. Define | r | = r i+ f 2 + • • • +rn. If ƒ is a 
tempered distribution we define Drf to be weak or distribution deriva
tive (d/dXiYiid/dxzY* • • • (d/dxn)

rnf. 

THEOREM 3. Any pair of the following norms for À (a; p, q) are 
equivalent, a real, l^p, <z^°°, where k, I, and s are non-negative 
integers and /3, y, 8, and e are real numbers. 

(a) \\y"-"fKx, y)\\„+\\f\U k>oc>0, 0<a . 
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(b) b ' -W*, 3>)||*+H/IU l>a, y<a. 
(c) £ M ~ S | M « - « ; p.« + ||/|U «<«. 
(d) ||^||«-«;p t f l where f= J<<j>. 

THEOREM 4. A (ai; £1, gi) w contained algebraically and topologically 
in A(ÖJ2; £2, #2) ^/ ÖWJ ow/^ if: piSpz, cL\ — nlp\*za2~nlp2, and when 
ax — n/pi = a2 — n/p2 if gi ̂  &. 

Let 3D be the set of indefinitely differentiate functions on E n with 
compact support, C0 the set of continuous functions which vanish at 
"infinity," and e0^= {/ : /=Jfy, 4>Ge0}. 

THEOREM 5. (a) A(cr, p, g), a real, 1 £p, q^ » is complete. 
(b) 3D w dewse iw A (a; ƒ>, 5) /or ce rm/, 1 :g£, g < 00, a#d w also dense 

in k(a\ 00, q)C\QQa^ for all real a and 1 ^ g < <*>. 

The "if" part of parts (a) and (b) of the following theorem extends 
a result of Hirschman's (see [7]). 

THEOREM 6. Let a be real 
Ifl<p<*> 
(a) Lpa CA(ce; p, q) if and only if max [p, 2 ] ^ q g 00, 
(b) A (a; p, q)(ZLpa if and only if l ^ g ^ m i n f ^ , 2]. 
If p — \ or 00 
(c) Lpa C A (a ; ƒ>, g) # awd <wZy if q= «>, 
(d) A (a; £, g) CLpa if and only if g = 1. 
Wftew Jfte inclusion is valid, the inclusion map is continuous. 

NOTE. From Theorem 6 it follows that A(a; 2, 2)=L 2 a , which re
sult was obtained by Aronszajn and Smith [ l ] . 

Let R be a subspace of En . If ƒ(#) is a function defined on En and 
the Poisson integral f(x, y) of ƒ(#) converges in some Lp norm 
(1 èpû °°) on i£ to a function g(x), then we define ƒ|i2(#) = g(#) for 
xÇzR. I t is clear that such a function is unique up to a set of measure 
zero in R. Suppose an image of Ek (0 S k ^ w) is embedded as a linear 
subspace of En. We call this subspace again Ek. 

THEOREM 7. (a) /ƒƒ(*) GA (a; ƒ>, g; £»), P = a-n/p+k/r>0, r^p, 
then ƒ I #fc(#) is defined and is in A(/3; r, g; E*). 

(b) If / £ A ( a ; £, g; E*), p=a — k/p+n/r>0, r^p, then there exists 
g(x)GA(j8; r, g; -En) weft that g\ Ek(x) =ƒ(*). 

The restriction and embedding maps thus defined are continuous. 

For results of a similar nature see [ l ] and [9]. 
Theorems 1-7 also hold in the periodic case with appropriate modi

fications resulting from the compactness of the fundamental torus, 
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r n . Thus in Theorem 5 the extra conditions imposed on the p = co 
case may be dropped. Theorem 4 for the periodic case takes the form : 

THEOREM 4'. A(ai] pi, qu Tn) is contained algebraically and topo-
logically in A(a2; p2, q2] Tn) a%, a2 real, 1 Spu P2, qu q* H* °° if and only if 
OL\ è «2, oil — n/pi ^ «2 — n/p2, and when a\ — n/p\ = a2 — n/p2 or a\ = a2 if 
qi^q^ 

In the periodic case we consider functions and distributions defined 
on the "fundamental torus" Tn of En, that is, the set of points xÇzEn 

such that — l/2<Xi^l/2, x=(xi, x2, • • • , xn). 
Let k—(ki, • • • , kn) be a lattice point in En (i.e., an w-vector with 

integer components). f(x) is extended to a periodic function in En by 
defining f(x+k) =f(x) for all x G £ « and all lattice points kÇzEn. The 
theorems mentioned above then extend to the periodic case by "peri-
odizing" the kernels defining the Poisson integral and Bessel potential 
of a function. (See Calderon and Zygmund [5] for a discussion of this 
approach of proving periodic versions of a theorem by "periodizing" 
the results for the general case.) 

We state now a theorem whose main interest lies in the case p = 1, 
oo, the result for Kp < <*> following from well-known results that 
singular integral operators of the type to be described are bounded 
operators from Lp into itself for 1 <p< oo. (See [5].) 

Let x' = x/\x\ for x £ E n . K(x) = 0 ( x ' ) / | x | n where fx^(xf)dxf = 0 
(2 is the unit of sphere of En), and letting co(0 be the rectified modulus 
of continuity of £2(a/) on S (i.e., œ(t) =supo<u-ri^<;8,res | Q(s) — Q(r) | ) 
we suppose that Jlo){t)fHt is finite. 

Let K*(x) be the peroidization of K(x) in the sense of [5] and define 

* (K*(X) if* as e, 

I 0 if x < €, 

7(#)=lim€-o fTnf(x~h)K* (h)dh, when it exists. 
I t is well known that for f{x)ÇzLv(Tn), l^pè oo, that f(x) exists 

a.e. 

THEOREM 8. Define Tf~f. T maps A (a; p, q\ Tn) continuously into 
itself, a real, 1 Sp, q^ °°. 

The case co(/) = 0(^) for j8>a was treated by Calderon and Zyg
mund in [5, p. 262]. 

The operators T so defined are translation invariant operators. 
We may continue the analysis begun by Zygmund in [14], and first 
show that if T is a linear translation invariant operator mapping some 
A space into itself, that restricted to 3D, T is represented by convolu-
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tion with a unique tempered distribution A T. Thus, if <£££>, then 
T<j> = AT * <£. We then show: 

THEOREM 9. If T is a linear translation invariant operator mapping 
A (a ; oo, oo ) or A (a ; 1, oo ), for some real a, continuously into itself', then 
^4r£A(0; 1, oo). If A is a tempered distribution and ^4£A(0; 1, oo), 
then T<j> = A * 0 , <£££), is an operator which extends uniquely to the 
closure of 3D in A (a; p, q) (see Theorem Sb) and which maps such 
A (a; p, q) continuously into itself. 

The following result is a consequence of a theorem of Lions in [8] 
on the duals of certain "trace spaces." 

THEOREM 10. Let a be real, Kp, q<<*>, l/p + l/p' = l, 1/q+l/q' 
= 1. Then the topological dual of A(a; p, q) is identifiable, topologically 
and algebraically, with A(—a; p', q'). It follows that A(cr, p, q) is re-
ûexive provided Kp, q < oo. 

When Theorem 10 is combined with results of Calderon [4] on 
intermediate spaces, we obtain the following interpolation theorem of 
the Riesz-Thorin type. 

THEOREM 11. Suppose 1 <pi, qi, r^, Si< oo ; cet-, /3» real; i — 0, 1. Then 
if T is a linear operator defined on £> with values in the space of tempered 
distributions and 

|| 2>|k;r,,.< S MMUiiPi*» * = 0, 1, * G 3), 

Mi independent of <£, then for each 0^15*1, <£££>, 

(#) \\TÛ\*r*&UÏ*ui\ÛUM 

where cx=(l-*)«<>+tai; / 5= ( l -* ) j8 0 +# i ; l/p = (l-t)/p0+t/p1; 1/q 
= (l-t)/qo+t/qi; l / r = ( l - * ) / r o + / / r r , l / $ = ( l - * ) / $ 0 + * A i and the 
operator has unique extension to all of A(a; p, q) preserving (#). 
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CORRECTION TO A POLYNOMIAL ANALOG OF 
THE GOLDBACH CONJECTURE1 

BY DAVID HAYES 

Communicated by E. E. Moise, April 20, 1963 

On page 116 of this paper, I state that if r<2h, then WK(T, d)^d 
for d> 1. This will be true in general only when H is an irreducible. 
However, the proof will still go through if either (1) H is square-free 
or else (2) h + 1 is not divisible by the characteristic of the underlying 
finite field. That one of these conditions hold should therefore be 
added to Theorem 2 as a hypothesis. 
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